Abstract:
In a logic circuit including transistors with the same conductivity, a reduction in output voltage is prevented with use of at least three transistors and a capacitor. With use of an oxide semiconductor in a semiconductor layer of the transistor, a logic circuit with high output voltage and high withstand voltage is achieved. With use of the logic circuit, a semiconductor device with high output voltage and high withstand voltage is achieved.
Abstract:
Provided is a power reception device in which power consumption at the time of wireless power supply is reduced. A power reception device is provided with a power reception control device capable of temporarily stopping supply of power supply voltage to a communication control unit for controlling communication in a break period of communication intermittently performed between a power transmission device and a power reception device. In the structure, a clock signal is generated on the basis of a power receiving signal transmitted from the power transmission device, and a period of communication intermittently performed can be measured using the clock signal. Further, a structure may be employed in which supply of power supply voltage to the communication unit in the power reception control device can be stopped in the break period of the communication.
Abstract:
Provided is a semiconductor device which can achieve a reduction in its area, reduction in power consumption, and operation at a high speed. A semiconductor device 10 has a structure in which a circuit 31 including a memory circuit and a circuit 32 including an amplifier circuit are stacked. With this structure, the memory circuit and the amplifier circuit can be mounted on the semiconductor device 10 while the increase in the area of the semiconductor device 10 is suppressed. Thus, the area of the semiconductor device 10 can be reduced. Further, the circuits are formed using OS transistors, so that the memory circuit and the amplifier circuit which have low off-state current and which can operate at a high speed can be formed. Therefore, a reduction in power consumption and improvement in operation speed of the semiconductor device 10 can be achieved.
Abstract:
One object is to provide a boosting circuit whose boosting efficiency is enhanced. Another object is to provide an RFID tag including a boosting circuit whose boosting efficiency is enhanced. A node corresponding to an output terminal of a unit boosting circuit or a gate electrode of a transistor connected to the node is boosted by bootstrap operation, so that a decrease in potential which corresponds to substantially the same as the threshold potential of the transistor can be prevented and a decrease in output potential of the unit boosting circuit can be prevented.
Abstract:
Provided is a power reception device in which power consumption at the time of wireless power supply is reduced. A power reception device is provided with a power reception control device capable of temporarily stopping supply of power supply voltage to a communication control unit for controlling communication in a break period of communication intermittently performed between a power transmission device and a power reception device. In the structure, a clock signal is generated on the basis of a power receiving signal transmitted from the power transmission device, and a period of communication intermittently performed can be measured using the clock signal. Further, a structure may be employed in which supply of power supply voltage to the communication unit in the power reception control device can be stopped in the break period of the communication.
Abstract:
An object is to provide a semiconductor device with reduced standby power. A transistor including an oxide semiconductor as an active layer is used as a switching element, and supply of a power supply voltage to a circuit in an integrated circuit is controlled by the switching element. Specifically, when the circuit is in an operation state, supply of the power supply voltage to the circuit is performed by the switching element, and when the circuit is in a stop state, supply of the power supply voltage to the circuit is stopped by the switching element. In addition, the circuit supplied with the power supply voltage includes a semiconductor element which is a minimum unit included in an integrated circuit formed using a semiconductor. Further, the semiconductor included in the semiconductor element contains silicon having crystallinity (crystalline silicon).
Abstract:
An object is to provide a semiconductor device that can maintain the connection relation between logic circuit units or the circuit configuration of each of the logic circuit units even after supply of power supply voltage is stopped. Another object is to provide a semiconductor device in which the connection relation between logic circuit units or the circuit configuration of each of the logic circuit units can be changed at high speed. In a reconfigurable circuit, an oxide semiconductor is used for a semiconductor element that stores data on the circuit configuration, connection relation, or the like. Specifically, the oxide semiconductor is used for a channel formation region of the semiconductor element.
Abstract:
A highly reliable semiconductor device capable of retaining data for a long period is provided. The transistor includes a first gate electrode, a first gate insulator over the first gate electrode, a first oxide and a second oxide over the first gate insulator, a first conductor over the first oxide, a second conductor over the second oxide, a third oxide covering the first gate insulator, the first oxide, the first conductor, the second oxide, and the second conductor, a second gate insulator over the third oxide, and a second gate electrode over the second gate insulator. An end portion of the second gate electrode is positioned between an end portion of the first conductor and an end portion of the second conductor in a channel length direction.
Abstract:
A memory device in which the number of films is reduced. The memory device includes a circuit and a wiring. The circuit includes a first memory cell and a second memory cell. The first memory cell includes a first transistor, a second transistor, and a first capacitor. The second memory cell includes a third transistor, a fourth transistor, and a second capacitor. The second memory cell is stacked over the first memory cell. One of a source and a drain of the first transistor is electrically connected to a gate of the second transistor and the first capacitor. One of a source and a drain of the third transistor is electrically connected to a gate of the fourth transistor and the second capacitor. A gate of the first transistor and a gate of the third transistor are electrically connected to the wiring.
Abstract:
A semiconductor device includes a memory cell, a buffer circuit, a switch, first to p-th switch circuits, and first to p-th capacitors (p is an integer of 2 or more). The first to p-th switch circuits each include first to third terminals. The memory cell is electrically connected to a first electrode of the first capacitor and an input terminal of the buffer circuit through the switch. A second electrode of an i-th capacitor is electrically connected to a first terminal of an i-th switch circuit and a first electrode of an (i+1)th capacitor (i is an integer of 1 to (p-1)). A second electrode of the p-th capacitor is electrically connected to a first terminal of the p-th switch circuit. An output terminal of the buffer circuit is electrically connected to a second terminal of each of the first to p-th switch circuits. A third terminal of each of the first to p-th switch circuits is electrically connected to a wiring supplying a low-level potential.