Abstract:
A thin-film semiconductor component having a carrier layer and a layer stack which is arranged on the carrier layer, the layer stack containing a semiconductor material and being provided for emitting radiation, wherein a heat dissipating layer provided for cooling the semiconductor component is applied on the carrier layer. A component assembly is also disclosed.
Abstract:
A radiation-emitting device includes a first active semiconductor layer embodied for the emission of electromagnetic radiation and for direct contact with connection electrodes, and a second active semiconductor layer embodied for the emission of electromagnetic radiation and for direct contact with connection electrodes. The first active semiconductor layer and the second active semiconductor layer are arranged in a manner stacked one above another.
Abstract:
A method for controlling a production facility using high-resolution location tracking of workpieces includes determining the current position of the start of the workpiece and the end of the workpiece being currently transported through the facility using position sensors and interposed displacement sensors arranged at different positions of the production facility, and measuring a length of the workpiece from a combination of at least two position sensors and at least one interposed displacement sensor or of at least two displacement sensors and at least one interposed position sensor. The physically determined positions at the various position sensors are compared with a nominal position of the workpiece calculated from the obtained measurement data, and a message is displayed and/or a test is terminated and/or the production facility is stopped when the physically determined positions exceed deviation limit values.
Abstract:
A radiation-emitting component includes a carrier, a semi-conductor chip arranged on the carrier, wherein the semi-conductor chip includes an active layer to generate electromagnetic radiation and a radiation exit surface, a first and a second contact structure for the electrical contacting of the semi-conductor chip, a first and a second contact layer, wherein the semi-conductor chip is electrically conductively connected to the first contact structure via the first contact layer and to the second contact structure via the second contact layer, a passivation layer arranged on the semi-conductor chip.
Abstract:
The invention relates to an optoelectronic seminconductor component, comprising a substrate-free optoelectronic semiconductor chip (1), which has a first main surface (1a) on an upper face and a second main surface (1b) on a lower face, and a metal carrier (2), which is arranged on the lower face of the optoelectronic seminconductor chip (1), wherein the metal carrier (2) protrudes over the optoelectronic semiconductor chip (1) in at least one lateral direction (1) and the metal carrier (2) is deposited on the second main surface (1b) of the optoelectronic semiconductor chip (1) using a galvanic or electroless plating method.
Abstract:
The invention relates to an optoelectronic component, having —a carrier (1) comprising a first main surface (Ia), —at least one optoelectronic semiconductor chip (2) having no substrate, and —a contact metallization (3a, 3b), wherein —the carrier (1) is electrically insulating, —the at least one optoelectronic semiconductor chip (2) is fastened to the first main surface (Ia) of the carrier (1) by means of a bonding material (4), particularly a solder material, —the contact metallization (3a, 3b) covers at least one area of the first main surface (Ia) free of the optoelectronic semiconductor chip (2), and —the contact metallization (3a, 3b) is electrically conductively connected to the optoelectronic semiconductor chip (2).
Abstract:
An electroluminescent device includes an inorganic luminescence diode chip having a radiation exit area, a plurality of contact webs provided to spread current and arranged on the radiation exit area, and a contact structure arranged outside the radiation exit area and electrically conductively connected to contact webs.
Abstract:
The invention relates to a method for producing semiconductor components, wherein a layer composite (6) containing a semiconductor material is formed on a growth substrate (1), a flexible carrier layer is applied to the layer composite (6), the flexible carrier layer is cured to form a self-supporting carrier layer (2), and the growth substrate (1) is stripped away. As an alternative, the carrier layer (2) may have a base layer (2b) and an adhesion layer (2a) adhering on the layer composite.
Abstract:
A carrier (1) for an optoelectronic structure (2) is specified, wherein in places an electrically insulating passivation material (16) is arranged between an electrically conductive layer (14) of the carrier (1) and a carrier-side connecting means layer (15). Furthermore, an optoelectronic semiconductor chip comprising such a carrier and an optoelectronic structure (2) is specified, said structure being electrically conductively and mechanically connected to the carrier (1) by means of the carrier-side connecting means layer (15).
Abstract:
The invention relates to an optoelectronic component, having —a carrier (1) comprising a first main surface (Ia), —at least one optoelectronic semiconductor chip (2) having no substrate, and —a contact metallization (3a, 3b), wherein —the carrier (1) is electrically insulating, —the at least one optoelectronic semiconductor chip (2) is fastened to the first main surface (Ia) of the carrier (1) by means of a bonding material (4), particularly a solder material, —the contact metallization (3a, 3b) covers at least one area of the first main surface (Ia) free of the optoelectronic semiconductor chip (2), and —the contact metallization (3a, 3b) is electrically conductively connected to the optoelectronic semiconductor chip (2).