摘要:
A lighting apparatus (10) comprises a light engine (12) producing ultra violet radiation. An enclosure (14) surrounds a radiation generating area of the light engine (12) to encompass the radiation. At least one wall (28) of the enclosure (14) is substantially reflective of the ultraviolet radiation. The enclosure (14) includes a replaceable top portion (30) which includes a phosphor portion (32). The phosphor portion (32) is spaced from the radiation generating area of the light engine (12) by a height of the enclosure (14).
摘要:
A flexible interconnect structure allows for rapid dissipation of heat generated from an electrical device that includes light-emitting elements, such as light-emitting diodes (“LEDs”) and/or laser diodes. The flexible interconnect structure comprises: (1) at least one flexible dielectric film on which circuit traces and, optionally, electrical circuit components are formed and at least a portion of which is removed through its thickness; and (2) at least a heat sink attached to one surface of the flexible dielectric film opposite to the surface on which circuit traces are formed. The flexible interconnect structure can include a plurality of such flexible dielectric films, each supporting circuit traces and/or circuit components, and each being attached to another by an electrically insulating layer. Electrical devices or light sources having complex shapes are formed from such flexible interconnect structures and light-emitting elements attached to the heat sinks so to be in thermal contact therewith.
摘要:
A valve and concomitant method of controlling flow of a fluid with a valve comprising isolating a fluid path from a valve stem with a diaphragm in a valve body, blocking the fluid path with a plunger having a stroke of less than approximately 500 micrometers, driving the plunger with an actuator, and operating the valve at a frequency of at least approximately 20 Hz but with a flow of at least approximately 5.0E-04 kg/sec.
摘要:
A light emitting apparatus (10, 110, 210, 310, 410) includes one or more light emitting chips (12, 112, 212, 312, 412) and a support (13, 14, 114, 214, 314, 414) on which the light emitting chips are disposed. The support includes a first side on which the light emitting chips are attached and a second side opposite the first side. A thermally superconducting heat transfer medium (22, 122, 222, 322, 422) is disposed in an interior volume of the support and thermally connects the first and second sides of the support. The thermally superconducting heat transfer medium has a thermal conductivity at least 1500 times greater than the thermal conductivity of copper.
摘要:
A gas sensor device including a semiconductor substrate; one or more catalytic gate-electrodes deposited on a surface of the semiconductor substrate; one or more ohmic contacts deposited on the surface of the semiconductor substrate and a passivation layer deposited on at least a portion of the surface; wherein the semiconductor substrate includes a material selected from the group consisting of silicon carbide, diamond, Group III nitrides, alloys of Group III nitrides, zinc oxide, and any combinations thereof.
摘要:
A semiconductor device die (10, 116) is disposed on a heat-sinking support structure (30, 100). Nanotube regions (52, 120) contain nanotubes (54, 126) are arranged on a surface of or in the heatsinking support structure (30, 100). The nanotube regions (52, 120) are arranged to contribute to heat transfer from the semiconductor device die (10, 116) to the heat-sinking support structure (30, 100). In one embodiment, the semiconductor device die (10) includes die electrodes (20, 22), and the support structure (30) includes contact pads (40, 42) defined by at least some of the nanotube regions (52). The contact pads (40, 42) electrically and mechanically contact the die electrodes (20, 22). In another embodiment, the heat-sinking support structure (100) includes microchannels (120) arranged laterally in the support structure (100). At least some of the nanotube regions are disposed inside the microchannels (100).
摘要:
A thermal transfer device having a first substrate layer, a second substrate layer and first and second electrodes disposed between the first substrate layer and the second substrate layer. The thermal transfer device also includes a release layer disposed between the first electrode and the second electrode and an actuator disposed adjacent the first and second electrodes. The actuator is adapted to separate the first and second electrodes from the release layer to open a thermotunneling gap between the first and second electrodes, and wherein the actuator is adapted to actively control the thermotunneling gap.
摘要:
A method of manufacturing a heat transfer device including providing first and second thermally conductive substrates that are substantially atomically flat, providing a patterned electrical barrier on the first or second thermally conductive substrates and disposing a low work function material on the first or second thermally conductive substrates in an area oriented between the patterned electrical barrier in a configuration in which the first and second thermally conductive substrates are positioned opposite from one another. The method also includes bonding the first and second thermally conductive substrates in the configuration and extracting a plurality of units having opposite sections of the first and second thermally conductive substrates, each unit having a portion of the patterned electrical barrier disposed about the low work function material.
摘要:
A light emitting apparatus (10, 110, 210, 310, 410) includes one or more light emitting diode chips (12, 112, 212, 312, 412) disposed on a chip support wall (16, 116, 216) including printed circuitry (34, 134, 234, 360, 362, 460, 462) connecting with the light emitting diode chips. A heat pipe (24, 124, 224, 324, 424) has a sealed volume (22, 122, 222, 322, 422) defined by walls including the chip support wall and at least one additional wall (18, 20, 118, 120, 218). The heat pipe further includes a heat transfer fluid (26, 226, 326, 426) disposed in the sealed volume.
摘要:
A light emitting package (8, 8′, 8″, 208, 408) includes a printed circuit board (10, 10′, 10″, 210, 410) supporting at least one light emitting die (12, 12″, 14, 16, 212, 412). A light transmissive cover (60, 60′, 60″, 260, 460) is disposed over the at least one light emitting die. The cover has an open end defining a cover perimeter (62, 62′, 62″, 262, 462) connected with the printed circuit board. An inside surface of the cover together with the printed circuit board defines an interior volume (70, 70″, 270, 470) containing the at least one light emitting die. An encapsulant (76, 76″, 276, 278, 476) is disposed in the interior volume and covers at least the light emitting die.