Abstract:
A method of forming a semiconductor device includes forming a fin on an insulating layer, where the fin includes a number of side surfaces, a top surface and a bottom surface. The method also includes forming a gate on the insulating layer, where the gate has a substantially U-shaped cross-section at a channel region of the semiconductor device.
Abstract:
A semiconductor device may include a substrate and an insulating layer formed on the substrate. A first device may be formed on the insulating layer, including a first fin. The first fin may be formed on the insulating layer and may have a first fin aspect ratio. A second device may be formed on the insulating layer, including a second fin. The second fin may be formed on the insulating layer and may have a second fin aspect ratio different from the first fin aspect ratio.
Abstract:
A method may include forming a gate electrode over a fin structure, depositing a first metal layer on a top surface of the gate electrode, performing a first silicide process to convert a portion of the gate electrode into a metal-silicide compound, depositing a second metal layer on a top surface of the metal-silicide compound, and performing a second silicide process to form a fully-silicided gate electrode.
Abstract:
A method of manufacturing a semiconductor device includes providing a strained-silicon semiconductor layer over a silicon germanium layer, and partially removing a first portion of the strained-silicon layer. The strained-silicon layer includes the first portion and a second portion, and a thickness of the second portion is greater than a thickness of the first portion. Initially, the first and second portions of the strained-silicon layer initially can have the same thickness. A p-channel transistor is formed over the first portion, and a n-channel transistor is formed over the second portion. A semiconductor device is also disclosed.
Abstract:
A memory device includes multiple fins formed adjacent to one another, a source region, a drain region, a gate, a wordline, and a bitline contact. At least one of the multiple fins is doped with a first type of impurities and at least one other one of the fins is doped with a second type of impurities. The source region is formed at one end of each of the fins and the drain region is formed at an opposite end of each of the fins. The gate is formed over two of the multiple fins, the wordline is formed over each of the multiple fins, and a bitline contact is formed adjacent at least one of the multiple fins.
Abstract:
A double-gate semiconductor device includes a substrate, an insulating layer, a fin, source and drain regions and a gate. The insulating layer is formed on the substrate and the fin is formed on the insulating layer. The source region is formed on the insulating layer adjacent a first side of the fin and the drain region is formed on the second side of the fin opposite the first side. The source and drain regions have a greater thickness than the fin in the channel region of the semiconductor device.
Abstract:
A method of manufacturing a MOSFET semiconductor device comprises forming a gate electrode over a substrate and a gate oxide between the gate electrode and the substrate; forming source/drain extensions in the substrate; forming first and second sidewall spacers; implanting dopants within the substrate to form source/drain regions in the substrate adjacent to the sidewalls spacers; laser thermal annealing to activate the source/drain regions; depositing a layer of nickel over the source/drain regions; and annealing to form a nickel silicide layer disposed on the source/drain regions. The source/drain extensions and sidewall spacers are adjacent to the gate electrode. The source/drain extensions can have a depth of about 50 to 300 angstroms, and the source/drain regions can have a depth of about 400 to 1000 angstroms. The annealing is at temperatures from about 350 to 500° C.
Abstract:
A method of manufacturing a MOSFET type semiconductor device includes planarizing a gate material layer that is deposited over a channel. The planarization is performed in a multi-step process that includes an initial “rough” planarization and then a “fine” planarization. The slurry used for the finer planarization may include added material that tends to adhere to low areas of the gate material.
Abstract:
A method of fabricating a semiconductor device, having a nitride/high-k material/nitride gate dielectric stack with good thermal stability which does not diffuse into a silicon substrate, a polysilicon gate, or a polysilicon-germanium gate when experiencing subsequent high temperature processes, involving: (a) providing a substrate; (b) initiating formation of the nitride/high-k material/nitride gate dielectric stack by depositing a first ultra-thin nitride film on the substrate; (c) depositing a high-k material, such as a thin metal film, on the first ultra-thin nitride film; (d) depositing a second ultra-thin nitride film on the high-k material, thereby forming a sandwich structure; (e) completing formation of the nitride/high-k material/nitride gate dielectric stack from the sandwich structure; and (f) completing fabrication of the semiconductor device.
Abstract:
A method is provided for eliminating uneven heating of substrate active areas during laser thermal annealing (LTA) due to variations in gate electrode density. Embodiments include adding dummy structures, formed simultaneously with the gate electrodes, to “fill in” the spaces between isolated gate electrodes, such that the spacing between the gate electrodes and the dummy structures is the same as the spacing between the densest array of device structures on the substrate surface. Since the surface features (i.e., the gate electrodes and the dummy structures) appear substantially uniform to the LTA laser, the laser radiation is uniformly absorbed by the substrate, and the substrate surface is evenly heated.