Abstract:
The present disclosure relates to a method of forming a metallic layer having pores extending therethrough, the method comprising the steps of: (a) contacting a cathode substrate with an electrolyte solution comprising at least one cation; reducing the cation to deposit the metallic layer on a surface of the cathode substrate; and (c) generating a plurality of non-conductive regions on the cathode substrate surface during reducing step (b); wherein the deposition of the metallic layer is substantially prevented on the non-conductive regions on the cathode substrate surface to thereby form pores extending through the deposited metallic layer. The present disclosure further provides a metallic porous membrane fabricated by the disclosed process.
Abstract:
A method for assessing fibrosis in a tissue is proposed. The method uses a test image which is an image of the tissue and comprises identifying, from the test image, a portal collagen area, a septal collagen area and a fibrillar collagen area respectively comprising pixels representing portal collagen, septal collagen and fibrillar collagen of the tissue, obtaining quantitative values of one or more features for each identified area based on characteristics of the identified area in the test image and assessing fibrosis using the quantitative values obtained for all the identified areas.
Abstract:
The present disclosure provides an understanding of the regulation of the developmental phases of stem cells and their induction into relevant cell lineages, such as primitive streak, endoderm, mesoderm, or subterrotories of endoderm's. In particular, the present disclosure provides methods, culture medium and kits for the maintenance and differentiation of stem cells into relevant cell lineages.
Abstract:
There is provided methods for producing a hydrogel comprising conjugates of a hydrogel forming agent and a flavonoid including a method for producing a hydrogel that is capable of adhesion of cells and which comprises enzymatically cross-linked conjugates of a hydrogel forming agent and a flavonoid. There is also provided a method for producing a hydrogel comprising conjugates of a hydrogel forming agent and a flavonoid without the addition of an exogenous peroxide or peroxidase or without the addition of an exogenous peroxide. Hydrogels produced by such methods and methods of using the hydrogels are also described herein.
Abstract:
We describe an ELABELA polypeptide comprising a sequence CXXXRCXXXHSRVPFP (SEQ ID NO: 1), in which X signifies an amino acid residue, such as a sequence selected from the group consisting of: SEQ ID NO: 2 to SEQ ID NO: 18, preferably CLQRRCMPLHSRVPFP (SEQ ID NO: 2), or a fragment, homologue, variant or derivative thereof, which polypeptide is capable of maintaining self-renewal and/or pluripotency of a stem cell.
Abstract translation:我们描述了包含序列CXXXRCXXXHSRVPFP(SEQ ID NO:1)的ELABELA多肽,其中X表示氨基酸残基,例如选自SEQ ID NO:2至SEQ ID NO:18的序列,优选 CLQRRCMPLHSRVPFP(SEQ ID NO:2)或其片段,同系物,变体或衍生物,其能够维持干细胞的自我更新和/或多能性。
Abstract:
A sensor and a method of detecting a target analyte are provided. The sensor includes a substrate; a layer comprising a plurality of through holes, wherein the layer is disposed above the substrate; a first element configured to detect a target analyte; a second element that can produce a detectable signal; wherein the first element and the second element are configured to couple the target analyte between the first element and the second element.
Abstract:
A method and system of in vitro developmental toxicity testing comprising the steps of micropatterning an extracellular matrix; growing embryonic stem cells on the micropatterned extracellular matrix in the presence of mesoendermal induction and testing for change of the geometrical mesoendoderm structure in the presence or absence of a test compound wherein (1) a decrease in mesoendodermal differentiation and/or (2) a change in morphology of the geometrical mesoendoderm structure in the presence of the test compound compared to cells in the absence of the test compound indicates that the test compound is a developmental toxic agent.
Abstract:
An optical light source is provided. The optical light source includes a waveguide including two reflectors arranged spaced apart from each other to define an optical cavity therebetween, an optical gain medium, and a coupling structure arranged to couple light between the optical cavity and the optical gain medium.
Abstract:
Structures for III-nitride GaN high electron mobility transistors (HEMT), method for fabricating for GaN devices and integrated chip-level power systems using the GaN devices are provided. The GaN HEMT structure includes a substrate, an AlGaN/GaN heterostructure grown on the substrate, and a normally-off GaN device fabricated on the AlGaN/GaN heterostructure. The AlGaN/GaN heterostructure includes a GaN buffer layer and an AlGaN barrier layer. The integrated chip-level power system includes a substrate, an AlGaN/GaN heterostructure layer grown on the substrate and a plurality of GaN devices. The AlGaN/GaN heterostructure layer includes a GaN buffer layer and an AlGaN barrier layer and is formed into mesa areas and valley areas. Each of the plurality of GaN devices are fabricated on a separate one of the mesa areas.
Abstract:
According to embodiments of the present invention, a magnetoresistive device is provided. The magnetoresistive device includes at least two ferromagnetic soft layers, wherein the at least two ferromagnetic soft layers have different ranges of magnetization switching frequencies. Further embodiments provide a magnetoresistive device including at least two oscillating ferromagnetic structures, wherein ranges of operating current amplitudes at which oscillations are induced for the at least two oscillating ferromagnetic structures are different. According to further embodiments of the present invention, writing methods for the magnetoresistive devices are provided.