Abstract:
Microsensors that include an integrated thermal energy source and an integrated temperature sensor are capable of providing localized heating and temperature control of individual sensing regions within the microsensor. Localized temperature control allows analyte detection to be carried out at the same temperatures or substantially the same temperatures at which the sensor is calibrated. By carrying out the sensing near the calibration temperature, more accurate results can be obtained. In addition, the temperature of the sensing region can be controlled so that chemical reactions involving the analyte in the sensing region occur near their peak reaction rate. Carrying out the sensing near the peak reaction rate improves the sensitivity of the sensor which is important as sensor dimensions decrease and the magnitude of the generated signals decreases.
Abstract:
A system and method for reducing warpage of a semiconductor wafer. The system includes a device for securing the semiconductor wafer in a heating area. The device includes a holding mechanism for securing an edge of the semiconductor wafer. The device further includes a pressure reducing device that reduces the pressure underneath the semiconductor device, which further secures the semiconductor device in the heating area. The heating area includes a plurality of heating and cooling zones in which the semiconductor wafer is subjected to various temperatures.
Abstract:
A semiconductor package and method of forming the same is described. The semiconductor package is formed from a semiconductor die cut from a semiconductor wafer that has a passivation layer. The semiconductor wafer is exposed to ionized gas causing the passivation layer to roughen. The semiconductor wafer is cut to form a plurality of semiconductor dies each with a roughened passivation layer. The plurality of semiconductor dies are placed on an adhesive layer to form a reconstituted wafer, and an encapsulation layer is formed enclosing the adhesive layer and the plurality of semiconductor dies. The passivation layer is removed and the semiconductor package formed includes electrical contacts for establishing electrical connections external to the semiconductor package.
Abstract:
A semiconductor package is formed having a substrate juxtaposed on at least two sides of a semiconductor die. Both the substrate and the semiconductor die are affixed to a conductive layer that draws heat generated during use of the semiconductor package away from the semiconductor die and the substrate. There are also electrical contacts affixed to the substrate and the semiconductor die. The electrical contacts facilitate electrical connection between the semiconductor die, the substrate, and any external devices or components making use of the semiconductor die. The substrate, semiconductor die, and at least a portion of some of the electrical contacts are enclosed by an encapsulating layer insulating the components. Portions of the electrical contacts not enclosed by the encapsulating layer are affixed to an outside device, such as a printed circuit board.
Abstract:
A process for making an integrated circuit, a wafer level integrated circuit package or an embedded wafer level package includes forming copper contact pads on a substrate or substructure. The substructure may include devices and the contact pads may be used for forming electrical couplings to the devices. For example, copper plating may be applied to a substructure and the copper plating etched to form copper contact pads on the substructure. An etching process may be applied to remove barrier layer material on the substructure, such as adjacent to the copper pads. For example, a hydrogen peroxide etch may be applied to remove titanium-tungsten from a surface of the substructure. The pads are again etched to remove barrier layer etchant, byproducts and/or oxide from the pads. Contamination control steps may be performed, such as quick-dump-and-rinse (QDR) and spin-rinse-and-dry (SRD) processing.
Abstract:
A semiconductor thermoelectric cooler includes P-type and N-type thermoelectric cooling elements. The P-type and N-type thermoelectric elements have a first portion having a first cross-sectional area and a second portion having a second cross-sectional area larger than the first cross-sectional area. The P-type and N-type thermoelectric cooling elements may, for example, be T-shaped or L-shaped. In another example, the thermoelectric cooling elements have a first surface having a first shape configured to couple to a first electrical conductor and a second surface opposite the first surface and having a second shape, different from the first shape, and configured to couple to a second electrical conductor. For example, the first surface may have a rectilinear shape of a first area and the second surface may have a rectilinear shape of a second area different from the first area. The semiconductor thermoelectric cooler may be manufactured using thin film technology.
Abstract:
A semiconductor thermoelectric cooler is configured to direct heat through channels of the cooler. The thermoelectric cooler has multiple electrodes and a first dielectric material positioned between side surfaces of the electrodes. A second dielectric material, different from the first dielectric material, is in contact with top surfaces of the electrodes. The first dielectric material extends above the top surface of the electrodes, separating portions of the second dielectric material, and is in contact with a portion of the top surfaces of the electrodes. The first dielectric material has a thermal conductivity different than a thermal conductivity of the second dielectric material. A ratio of the first dielectric material to the second dielectric material in contact with the top surface of the electrodes may be selected to control the heat retention. The semiconductor thermoelectric cooler may be manufactured using thin film technology.
Abstract:
A process is described for integrating two closely spaced thin films without deposition of the films through deep vias. The films may be integrated on a wafer and patterned to form a microscale heat-trimmable resistor. A thin-film heating element may be formed proximal to a thin-film resistive element, and heat generated by the thin-film heater can be used to permanently trim a resistance value of the thin-film resistive element. Deposition of the thin films over steep or abrupt topography is minimized by using a process in which the thin films are deposited in a sequence that falls between depositions of thick metal contacts to the thin films.
Abstract:
Fan-out wafer level packaging includes an integrated circuit having a top surface, a bottom surface and a bond pad defined on the top surface, and a substrate having a cavity. An adhesive layer is positioned between a top surface of the cavity and the bottom surface of the integrated circuit, and a bump is positioned proximate a top surface of the fan-out wafer level packaging, the bump spaced apart from the integrated circuit. A redistribution layer is configured to electrically couple the bond pad of the integrated circuit to the bump.