Abstract:
Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate. Probe tip patterning may occur in a variety of different ways, including, for example, via molding in patterned holes that have been isotropically or anisotropically etched silicon, via molding in voids formed in exposed photoresist, via molding in voids in a sacrificial material that have formed as a result of the sacrificial material mushrooming over carefully sized and located regions of dielectric material, via isotropic etching of the tip material around carefully sized and placed etching shields, via hot pressing, and the like.
Abstract:
A portable electronic storage device with an internal memory device includes a base, a memory device arranged in connection with the base, an adapter connected to the memory device, a cover detachably connected to the base and a clip arranged on the base or cover for enabling the base or cover to be removably clipped to an object. The adapter is arranged on the base such that when the cover is detached from the base, the adapter is exposed and can be coupled to an I/O port of a computer and when the cover is connected to the base, the adapter is covered by the cover thereby preventing damage to the adapter and memory device.
Abstract:
Embodiments of the invention provide electrochemical fabrication processes that may be used for the fabrication of space transformers or the co-fabrication of microprobe arrays along with one or more space transformers.
Abstract:
Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate. Probe tip patterning may occur in a variety of different ways, including, for example, via molding in patterned holes that have been isotropically or anisotropically etched silicon, via molding in voids formed in over exposed photoresist, via molding in voids in a sacrificial material that have formed as a result of the sacrificial material mushrooming over carefully sized and located regions of dielectric material, via isotropic etching of a the tip material around carefully sized placed etching shields, via hot pressing, and the like.
Abstract:
Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
Abstract:
Multi-layer structures are electrochemically fabricated from at least one structural material (e.g. nickel), that is configured to define a desired structure and which may be attached to a substrate, and from at least one sacrificial material (e.g. copper) that surrounds the desired structure. After structure formation, the sacrificial material is removed by a multi-stage etching operation. In some embodiments sacrificial material to be removed may be located within passages or the like on a substrate or within an add-on component. The multi-stage etching operations may be separated by intermediate post processing activities, they may be separated by cleaning operations, or barrier material removal operations, or the like. Barriers may be fixed in position by contact with structural material or with a substrate or they may be solely fixed in position by sacrificial material and are thus free to be removed after all retaining sacrificial material is etched.
Abstract:
An environmental monitoring and controlling system for a ventilated cage and rack system that monitors and measures air flow in the rack at either the rack or cage level. At the rack level, two pressure sensors are provided in a supply air system to accurately monitor the air flow rate into the rack. In addition, two pressure sensors may be provided in an exhaust air system to accurately monitor the air flow rate out of the rack. At the cage level, a cage may be equipped with a highly accurate pressure sensor, including a Venturi tube and thermistor, the monitor the air flow rate in a cage located at any cage position in the rack.
Abstract:
Placing an event into a particular cluster can allow various inferences about the event. A new payment transaction that looks similar to a previously identified cluster of mostly fraudulent payment transactions, for example, may be higher risk. The present disclosure includes structural data improvements to the way that online clustering of events (which may include web events and not just payment transactions) occurs. A new event can be classified into a particular segment very quickly using feature table searching, which can allow for better decision making when a short timeframe is required (e.g. transaction processing, online advertising, etc.).
Abstract:
Devices, systems, and methods for matching distributed energy consumer preferences with distributed energy investor preferences are disclosed. In one aspect a computerized method comprises receiving preference-related data associated with a distributed energy consumer, determining a preference profile for the consumer, creating a personalized distributed energy asset for the consumer, and bundling the personalized distributed energy assets into a bundle of distributed energy assets. In another aspect the method comprises receiving preference-related data associated with a distributed energy investor, determining a preference profile for the investor, and matching the bundle of distributed energy assets with the investor.