Abstract:
An LED lighting assembly including a plurality of individual LEDs mounted on a common, bendable heat sinking member designed to remove heat from the LEDs during operation and also to be formed (bent) to provide the desired light direction and intensity. Several such assemblies may be used within an LED lamp, as also provided herein. The lamp is ideal for use within medical and dental environments to assure optimal light onto a patient located at a specified distance from the lamp.
Abstract:
A method of forming a capacitive substrate in which at least one capacitive dielectric layer of material is screen or ink jet printed onto a conductor and the substrate is thereafter processed further, including the addition of thru-holes to couple selected elements within the substrate to form at least two capacitors as internal elements of the substrate. Photoimageable material is used to facilitate positioning of the capacitive dielectric being printed. The capacitive substrate may be incorporated within a larger circuitized substrate, e.g., to form an electrical assembly. A method of making an information handling system including such substrates is also provided.
Abstract:
An optical-electronic package for an electronic device provides electrical connections to the electronic device and optical fiber connections to the electronic device. The package includes a high thermal conductivity base which has a pedestal to support and provide heat transfer connection to the electronic device. A seal band is formed on the base and a casing is bonded to the seal band. The casing has side feedthroughs for the electrical connections from the electronic device, and the casing has top feedthroughs or grooves for the optical fiber connections from the electronic device. A lid is hermetically sealed to the top of the casing. The lid has retractable means for forming a bend in the optical fibers to provide strain relief when the lid is placed on the casing. The retractable means for forming a bend in the optical fibers is retractable once the lid is sealed on the casing.
Abstract:
A method of making a circuitized substrate (e.g., PCB) including at least one and possibly several internal optical pathways as part thereof such that the resulting substrate will be capable of transmitting and/or receiving both electrical and optical signals. The method involves forming at least one opening between a side of the optical core and an adjacent upstanding member such that the opening is defined by at least one angular sidewall. Light passing through the optical core material (or into the core from above) is reflected off this angular sidewall. The medium (e.g., air) within the opening thus also serves as a reflecting medium due to its own reflective index in comparison to that of the adjacent optical core material. The method utilizes many processes used in conventional PCB manufacturing, thereby keeping costs to a minimum. The formed substrate is capable of being both optically and electrically coupled to one or more other substrates possessing similar capabilities, thereby forming an electro-optical assembly of such substrates.
Abstract:
A method of making circuitized substrate comprised of at least one dielectric material having an electrically conductive pattern thereon. At least part of the pattern is used as the first layer of an organic memory device which further includes at least a second dielectric layer over the pattern and a second pattern aligned with respect to the lower part for achieving several points of contact to thus form the device.
Abstract:
A circuitized substrate comprised of at least one dielectric material having an electrically conductive pattern thereon. At least part of the pattern is used as the first layer of an organic memory device which further includes at least a second dielectric layer over the pattern and a second pattern aligned with respect to the lower part for achieving several points of contact to thus form the device. The substrate is preferably combined with other dielectric-circuit layered assemblies to form a multilayered substrate on which can be positioned discrete electronic components (e.g., a logic chip) coupled to the internal memory device to work in combination therewith. An electrical assembly capable of using the substrate is also provided, as is an information handling system adapted for using one or more such electrical assemblies as part thereof.
Abstract:
A method and associated structure for forming a conductive path within a laminate. A conductive element is presses into an opening in the laminate such that portion of at least one end of the conductive element extends beyond a surface of the laminate. A compressive pressure is applied to the portion of the at least one end of the conductive element. The compressive pressure applied to the at least one end of the conductive element forms a contact pad extending beyond the surface of the laminate. The conductive element may include an inner element covered by an outer element.
Abstract:
A multilayered PCB including two multilayered portions, one of these able to electrically connect electronic components mounted on the PCB to assure high frequency connections therebetween. The PCB further includes a conventional PCB portion to reduce costs while assuring a structure having a satisfactory overall thickness for use in the PCB field. Coupling is also possible to the internal portion from these components. Methods of making these structures have also been provided.
Abstract:
An optical fiber guide includes a matrix of holes integrated directly into a substrate on which one or more optical chips are mounted. The substrate therefore functions both as a guide for optically coupling a plurality of optical fibers to an optical chip, as well as a carrier for the optical chip itself. The size of the fiber guide and its integration density is therefore improved over conventional fiber connectors. The substrate is preferably made of a material having a coefficient of thermal expansion substantially similar to the coefficient of thermal expansion of the optical chip. This ensures that the optical fibers will remain optically coupled to the chip through the matrix of holes in the substrate regardless of external temperature influences. If desired, integrated circuits may be mounted onto the substrate to increase the functionality of the fiber guide. A method for making the fiber guide has fewer process steps than conventional methods because fiber guide has fewer parts than conventional fiber-optic connectors.
Abstract:
The present invention is an apparatus and method for maximizing light beam utilization in patterning applications by positioning a plurality of mask mirrors in the light beam path to form patterned light onto a plurality of work pieces. Each mask mirror is designed so that a portion of the light beam area needed for exposing a work piece to patterned light is reflected from the mask mirror, while the remainder is passed through the mask mirror to another mask mirror. Alternatively, each mask mirror can be designed so that a portion of the light beam area needed for exposing a work piece to patterned light is passed through the mask mirror, while the remainder is reflected to another mask mirror.