Abstract:
Disclosed herein is a caching agent for preventing deadlock in a processor. The caching agent includes a receiver configured to receive a request from a core of the processor. The caching agent includes ingress logic coupled to the receiver to determine that the request is potentially a cacheable request. The ingress logic is to determine that the request does not deplete an available coherence resource. The ingress logic is to allow the request to be processed in response to the determination that the request does not deplete the available coherence resource.
Abstract:
In one embodiment, the present invention includes a multicore processor having a plurality of cores, a shared cache memory, an integrated input/output (IIO) module to interface between the multicore processor and at least one IO device coupled to the multicore processor, and a caching agent to perform cache coherency operations for the plurality of cores and the IIO module. Other embodiments are described and claimed.
Abstract:
An interface for coupling an agent to a fabric supports a set of coherent interconnect protocols and includes a global channel to communicate control signals to support the interface, a request channel to communicate messages associated with requests to other agents on the fabric, a response channel to communicate responses to other agents on the fabric, and a data channel to couple to communicate messages associated with data transfers to other agents on the fabric, where the data transfers include payload data.
Abstract:
A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
Abstract:
An interface for coupling an agent to a fabric supports a set of coherent interconnect protocols and includes a global channel to communicate control signals to support the interface, a request channel to communicate messages associated with requests to other agents on the fabric, a response channel to communicate responses to other agents on the fabric, and a data channel to couple to communicate messages associated with data transfers to other agents on the fabric, where the data transfers include payload data.
Abstract:
Techniques and mechanisms for identifying a memory access resource which is to be a target of an access request. In an embodiment, a processor comprises route tables which are to provide entries corresponding to different respective memory access resources which are coupled to the processor. The processor further comprises a list of items which each correspond to a different respective range of addresses, wherein the items each include an identifier of a respective route table, and an identifier of a respective index offset. Based on an address of the access request, a decoder circuit of the processor searches the list to identify a corresponding one of the items. In another embodiment, the decoder circuit accesses a route table entry, based on the search, to determine how the access request is to be directed to a particular memory access resource.
Abstract:
Methods and apparatuses relating to hardware processors with multiple interconnected dies are described. In one embodiment, a hardware processor includes a plurality of physically separate dies, and an interconnect to electrically couple the plurality of physically separate dies together. In another embodiment, a method to create a hardware processor includes providing a plurality of physically separate dies, and electrically coupling the plurality of physically separate dies together with an interconnect.
Abstract:
A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state
Abstract:
A starvation mode is entered and a particular dependency of a first request in a retry queue is identified. The particular dependency is determined to be acquired and the first request is retried based on acquisition of the particular dependency.
Abstract:
A memory controller receives a memory invalidation request that references a line of far memory in a two level system memory topology with far memory and near memory, identifies an address of the near memory corresponding to the line, and reads data at the address to determine whether a copy of the line is in the near memory. Data of the address is to be flushed to the far memory if the data includes a copy of another line of the far memory and the copy of the other line is dirty. A completion is sent for the memory invalidation request to indicate that a coherence agent is granted exclusive access to the line. With exclusive access, the line is to be modified to generate a modified version of the line and the address of the near memory is to be overwritten with the modified version of the line.