摘要:
An inter-layer dielectric structure and method of making such structure are disclosed. A composite dielectric layer, initially comprising a porous matrix and a porogen, is formed. Subsequent to other processing treatments, the porogen is decomposed and removed from at least a portion of the porous matrix, leaving voids defined by the porous matrix in areas previously occupied by the porogen. The resultant structure has a desirably low k value as a result of the porosity and materials comprising the porous matrix and porogen. The composite dielectric layer may be used in concert with other dielectric layers of varying porosity, dimensions, and material properties to provide varied mechanical and electrical performance profiles.
摘要:
A method of forming a microelectronic structure and its associated structures is described. In one embodiment, a substrate is provided with a sacrificial layer disposed on a hard mask layer, and a metal layer disposed in a trench of the substrate and on the sacrificial layer. The metal layer is then removed at a first removal rate wherein a dishing is induced on a top surface of the metal layer until the sacrificial layer is exposed, and simultaneously removing the metal layer and the sacrificial layer at a second removal rate without substantially removing the hard mask.
摘要:
The present invention describes an apparatus that includes a polish pad, the polish pad including a first through-opening; a vertical distribution layer located below the polish pad, the vertical distribution layer connected to the through-opening; a lateral distribution layer located below the vertical distribution layer, the lateral distribution layer connected to the vertical distribution layer; and a slurry dispense located over a front-side of the polish pad, the slurry dispense to provide a slurry to be transported through the polish pad to the lateral distribution layer. The present invention further describes a method including dispensing a slurry at a front-side of a polish pad; flowing the slurry to a location below the polish pad; flowing the slurry upwards and outwards, towards edges of the polish pad; and distributing the slurry to an upper surface of the polish pad.
摘要:
Methods of forming a microelectronic structure are described. Embodiments of those methods include providing a substrate comprising at least one opening, and then applying a nanotube slurry comprising at least one nanotube to the substrate, wherein the at least one nanotube is substantially placed within the at least one opening.
摘要:
According to one aspect of the present invention, a method of electrochemically polishing a semiconductor substrate may be provided. A semiconductor substrate processing fluid, having a plurality of abrasive particles therein, may be placed between the surface of the semiconductor substrate and the polish head. The polish head may be moved relative to the surface of the semiconductor substrate to cause the abrasive particles to polish the surface of the semiconductor substrate. According to a second aspect of the present invention, a method for electro-polishing a semiconductor substrate may be provided. A semiconductor substrate may be placed in an electrolytic solution. A surface of the semiconductor substrate may be contacted with at least one conductive member. A voltage may be applied across the electrolytic solution and the at least one conductive member. The at least one conductive member may be moved across the surface of the semiconductor substrate.
摘要:
The present invention describes a method including: providing a wafer; applying a photoresist over the wafer; forming a first set of features in the photoresist; etching a hard mask below the photoresist to form a second set of features in the hard mask; removing the photoresist; etching a polysilicon below the hardmask to form a third set of features in the polysilicon; removing the hard mask; and reducing a line edge roughness in the third set of features.
摘要:
An inter-layer dielectric structure and method of making such structure are disclosed. A composite dielectric layer, initially comprising a porous matrix and a porogen, is formed. Subsequent to other processing treatments, the porogen is decomposed and removed from at least a portion of the porous matrix, leaving voids defined by the porous matrix in areas previously occupied by the porogen. The resultant structure has a desirably low k value as a result of the porosity and materials comprising the porous matrix and porogen. The composite dielectric layer may be used in concert with other dielectric layers of varying porosity, dimensions, and material properties to provide varied mechanical and electrical performance profiles.
摘要:
Fabricating a semiconductor structure includes providing a semiconductor substrate, forming a silicide layer over the substrate, and removing a portion of the silicide layer by chemical mechanical polishing. The fabrication of the structure can also include forming a dielectric layer after forming the silicide layer, and removing a portion of the dielectric layer by chemical mechanical polishing before removing the portion of the silicide layer.
摘要:
A method of forming a microelectronic structure and its associated structures is described. In one embodiment, a substrate is provided with a sacrificial layer disposed on a hard mask layer, and a metal layer disposed in a trench of the substrate and on the sacrificial layer. The metal layer is then removed at a first removal rate wherein a dishing is induced on a top surface of the metal layer until the sacrificial layer is exposed, and simultaneously removing the metal layer and the sacrificial layer at a second removal rate without substantially removing the hard mask.
摘要:
An inter-layer dielectric structure and method of making such structure are disclosed. A composite dielectric layer, initially comprising a porous matrix and a porogen, is formed. Subsequent to other processing treatments, the porogen is decomposed and removed from at least a portion of the porous matrix, leaving voids defined by the porous matrix in areas previously occupied by the porogen. The resultant structure has a desirably low k value as a result of the porosity and materials comprising the porous matrix and porogen. The composite dielectric layer may be used in concert with other dielectric layers of varying porosity, dimensions, and material properties to provide varied mechanical and electrical performance profiles.