摘要:
Considering further promotion of high output and miniaturization of a sensor element, it is an object of the present invention to form a plurality of elements in a limited area so that an area occupied by the element is reduced for integration. It is another object to provide a process which improves the yield of a sensor element. According to the present invention, a sensor element using an amorphous silicon film and an output amplifier circuit constituted by a thin film transistor are formed over a substrate having an insulating surface. In addition, a metal layer for protecting an exposed wire when a photoelectric conversion layer of the sensor element is patterned is provided between the photoelectric conversion layer and the wire connected to the thin film transistor.
摘要:
A stack including a first electrode, a first impurity semiconductor layer having one conductivity type, an intrinsic semiconductor layer, a second impurity semiconductor layer having an opposite conductivity type to the one conductivity type, and a light-transmitting second electrode is formed over an insulator. The light-transmitting second electrode and the second impurity semiconductor layer have one or more openings. The shortest distance between one portion of the wall of one opening and an opposite portion of the wall of the same opening at the level of the interface between the second impurity semiconductor layer and the intrinsic semiconductor layer is made smaller than the diffusion length of holes in the intrinsic semiconductor layer. Thus, recombination is suppressed, so that more photocarriers are generated due to the openings and taken out as current, whereby conversion efficiency is increased.
摘要:
The present invention provides a photoelectric conversion device capable of detecting light from weak light to strong light and relates to a photoelectric conversion device having a photodiode having a photoelectric conversion layer; an amplifier circuit including a transistor; and a switch, where the photodiode and the amplifier circuit are electrically connected to each other by the switch when intensity of entering light is lower than predetermined intensity so that a photoelectric current is amplified by the amplifier circuit to be outputted, and the photodiode and part or all of the amplifier circuits are electrically disconnected by the switch so that a photoelectric current is reduced in an amplification factor to be outputted. According to such a photoelectric conversion device, light from weak light to strong light can be detected.
摘要:
The present invention provides a photoelectric conversion device in which a leakage current is suppressed. A photoelectric conversion device of the present invention comprises: a first electrode over a substrate; a photoelectric conversion layer including a first conductive layer having one conductivity, a second semiconductor layer, and a third semiconductor layer having a conductivity opposite to the one conductivity of the second semiconductor layer over the first electrode, wherein an end portion of the first electrode is covered with the first semiconductor layer; an insulating film, and a second electrode electrically connected to the third semiconductor film with the insulating film therebetween, over the insulating film, are formed over the third semiconductor film, and wherein a part of the second semiconductor layer and a part of the third semiconductor layer is removed in a region of the photoelectric conversion layer, which is not covered with the insulating film.
摘要:
The present invention provides a semiconductor device formed over an insulating substrate, typically a semiconductor device having a structure in which mounting strength to a wiring board can be increased in an optical sensor, a solar battery, or a circuit using a TFT, and which can make it mount on a wiring board with high density, and further a method for manufacturing the same. According to the present invention, in a semiconductor device, a semiconductor element is formed on an insulating substrate, a concave portion is formed on a side face of the semiconductor device, and a conductive film electrically connected to the semiconductor element is formed in the concave portion.
摘要:
The present invention provides a photoelectric conversion device in which a leakage current is suppressed. A photoelectric conversion device of the present invention comprises: a first electrode over a substrate; a photoelectric conversion layer including a first conductive layer having one conductivity, a second semiconductor layer, and a third semiconductor layer having a conductivity opposite to the one conductivity of the second semiconductor layer over the first electrode, wherein an end portion of the first electrode is covered with the first semiconductor layer; an insulating film, and a second electrode electrically connected to the third semiconductor film with the insulating film therebetween, over the insulating film, are formed over the third semiconductor film, and wherein a part of the second semiconductor layer and a part of the third semiconductor layer is removed in a region of the photoelectric conversion layer, which is not covered with the insulating film.
摘要:
The present invention provides a semiconductor device formed over an insulating substrate, typically a semiconductor device having a structure in which mounting strength to a wiring board can be increased in an optical sensor, a solar battery, or a circuit using a TFT, and which can make it mount on a wiring board with high density, and further a method for manufacturing the same. According to the present invention, in a semiconductor device, a semiconductor element is formed on an insulating substrate, a concave portion is formed on a side face of the semiconductor device, and a conductive film electrically connected to the semiconductor element is formed in the concave portion.
摘要:
A photoelectric conversion module in which an output voltage defect is suppressed is obtained by forming in parallel over a substrate n number (n is a natural number) of integrated photoelectric conversion devices each including a plurality of cells that are connected in series, and electrically connecting in parallel n−1 number or less of integrated photoelectric conversion devices with normal electrical characteristics and excluding an integrated photoelectric conversion device with a characteristic defect such as a short-circuit between top and bottom electrodes or a leak current due to a structural defect or the like formed in a semiconductor layer or the like.
摘要:
A multi-junction photoelectric conversion device that can be manufactured by a simple method is provided. In addition, a photoelectric conversion device whose mechanical strength is increased without complicating a manufacturing process is provided. A photoelectric conversion device includes a first cell having a photoelectric conversion function, a second cell having a photoelectric conversion function, and a structure body including a fibrous body, which firmly attaches and electrically connects the first cell and the second cell to each other. Accordingly, a multi-junction photoelectric conversion device in which semiconductor junctions are connected in series and sufficient electrical connection between p-i-n junctions is ensured can be provided.
摘要:
It is an object of the present invention to minimize an electrode in a solar cell to minimize the solar cell. The present invention provides a method for manufacturing a solar cell comprising the steps of forming a first electrode layer over a substrate, forming a photoelectric conversion layer over the first electrode layer, forming an organic layer over the photoelectric conversion layer, forming an opening reaching the first electrode layer in the photoelectric conversion layer, and forming a second electrode layer by filling the opening with a conductive paste, wherein the organic layer modifies the surface of the photoelectric conversion layer and a contact angle between the conductive paste and the photoelectric conversion becomes greater. According to the present invention, wettability of a photoelectric conversion layer can be decreased by forming an organic layer on a surface of the photoelectric conversion layer. Thereby an electrode layer and an insulating isolation layer can be thinned.