摘要:
A technique is provided for installing circuit components, such as memory devices, in a support, such as a socket. The device to be installed is supported in a holder or shell. The holder is positioned over a support region in the receiving socket. A manual actuator is pressed into the holder to eject the device from the holder and to install the device in the support. The holder may be configured to hold a single device, or multiple devices aligned in slots defined by partitions. A multi-device tray may be provided for indexing devices toward an ejection slot, through which the devices are installed by manual actuation of an ejecting actuator. The technique provides protection for the device prior to and during installation, and facilitates manual installation of such devices without requiring direct hand contact with the device either prior to or during installation.
摘要:
A back-to-back semiconductor device assembly includes two vertically mountable semiconductor devices, the backs of which are secured to one another. The bond pads of both semiconductor devices are disposed adjacent a single, mutual edge of the assembly. The semiconductor devices may comprise semiconductor dice, or they may be devices that have yet to be separated from other devices carried by the same substrates.
摘要:
A method for packaging a semiconductor device includes connecting a plurality of wire leads to a corresponding plurality of electrical connection pads on the semiconductor device, covering at least a portion of the semiconductor device and at least a portion of each of the wire leads with an encapsulating material, and removing a portion of the encapsulating material and a portion of each of the wire leads to form a packaged semiconductor device wherein each of the wire leads has an exposed portion only at an end. The invention also includes a packaged semiconductor device having an integrated circuit device with a plurality of electrical connection pads, a plurality of wire leads coupled to the plurality of electrical connection pads, and a covering of encapsulating material covering at least a portion of the integrated circuit device and covering each of the wire leads, wherein each of the wire leads has an exposed end. The present invention contemplates wire bonding and encapsulation of individual die as well as multiple die on a single wafer.
摘要:
The present invention relates to enhanced thermal management of a microelectronic device package on a printed circuit board (PCB) having a solder ring or dam that encompasses a ball array. The ring or dam bears stress from disparate coefficients of mechanical expansion between the PCB and the ball array.
摘要:
A method for packaging a semiconductor device includes connecting a plurality of wire leads to a corresponding plurality of electrical connection pads on the semiconductor device, covering at least a portion of the semiconductor device and at least a portion of each of the wire leads with an encapsulating material, and removing a portion of the encapsulating material and a portion of each of the wire leads to form a packaged semiconductor device wherein each of the wire leads has an exposed portion only at an end. The invention also includes a packaged semiconductor device having an integrated circuit device with a plurality of electrical connection pads, a plurality of wire leads coupled to the plurality of electrical connection pads, and a covering of encapsulating material covering at least a portion of the integrated circuit device and covering each of the wire leads, wherein each of the wire leads has an exposed end. The present invention contemplates wire bonding and encapsulation of individual die as well as multiple die on a single wafer.
摘要:
The present invention relates to enhanced thermal management of a microelectronic device package on a printed circuit board (PCB) having a solder ring or dam that encompasses a ball array. The ring or dam bears stress from disparate coefficients of mechanical expansion between the PCB and the ball array.
摘要:
An embodiment of an inventive semiconductor device comprises an unpackaged semiconductor wafer section having a major surface with a plurality of bond pads thereon. A plurality of conductors each comprise a lead member and at least a portion formed within a matrix. The conductors are attached to the major surface of the wafer section. An electrical connection electrically couples each of the bond pads with at least one of the lead members. Sealing material is then formed to contact at least the bond pads and the lead members.
摘要:
A ceramic or plastic body has a shelf comprising conductive traces. A semiconductor die is attached to the underside of the shelf, or to a base of the body. A void or voids in said shelf allows the passage of bond wires to couple the bond pads of the inferiorly positioned semiconductor die with said conductive traces. Manufacturable from ceramic, plastic, or any workable material, various described embodiments of the invention alleviate the need for a lead frame while being usable with a die having bond pads located either centrally or laterally. The invention can receive die of various dimensions without a change of design while allowing short bond wire lengths for each die size.
摘要:
In one implementation, a circuit substrate includes a substrate having opposing sides. At least one of the sides is configured for transfer mold packaging and has conductive traces formed thereon. A soldermask is received on the one side, and has a plurality of openings formed therethrough to locations on the conductive traces. The soldermask includes a peripheral elongated trench therein positioned on the one side to align with at least a portion of an elongated mold void perimeter of a transfer mold to be used for transfer mold packaging of the one side. In one implementation, the invention includes a transfer mold semiconductor packaging process. In one implementation, the invention includes a semiconductor package. In one implementation, the invention includes a ball grid array.
摘要:
The present invention provides flip-chip packaging for optically interactive devices such as image sensors and methods of assembly. In a first embodiment of the invention, conductive traces are formed directly on the second surface of a transparent substrate and an image sensor chip is bonded to the conductive traces. Discrete conductive elements are attached to the conductive traces and extend below a back surface of the image sensor chip. In a second embodiment, a secondary substrate having conductive traces formed thereon is secured to the transparent substrate. In a third embodiment, a backing cap having a full array of attachment pads is attached to the transparent substrate of the first embodiment or the secondary substrate of the second embodiment. In a fourth embodiment, the secondary substrate is a flex circuit having a mounting portion secured to the second surface of the transparent substrate and a backing portion bent over adjacent to the back surface of the image sensor chip.