Abstract:
An optoelectronic semiconductor chip includes a semiconductor body that emits primary light, and a luminescence conversion element that emits secondary light by wavelength conversion of at least part of the primary light, wherein the luminescence conversion element has a first lamina fixed to a first partial region of an outer surface of the semiconductor body, the outer surface emitting primary light, and leaves free a second partial region of the outer surface, the luminescence conversion element has a second lamina fixed to a surface of the first lamina facing away from the semiconductor body and spaced apart from the semiconductor body, the first lamina is at least partly transmissive to the primary radiation, a section of the second lamina covers at least the second partial region, and at least the section of the second lamina is designed to be absorbent and/or reflective and/or scattering for the primary radiation.
Abstract:
A surface-mountable optoelectronic component has a radiation passage face, an optoelectronic semiconductor chip and a chip carrier. A cavity is formed in the chip carrier and the semiconductor chip is arranged in the cavity. A molding surrounds the chip carrier at least in places. The chip carrier extends completely through the molding in a vertical direction perpendicular to the radiation passage face.
Abstract:
A method can be used for producing an optoelectronic device. A first leadframe section with a component is provided. The component is designed to emit electromagnetic radiation on an emission side. The emission side faces away from the carrier. A second leadframe section is provided. In a first method step the component and the two leadframe sections are encapsulated with a first potting material in such a way that the component and the leadframe sections are embedded into a potting body, but wherein at least part of the emission area of the component remains free of the first potting material and a cutout is formed in the potting body at least above the emission area of the component. In a second method step a second potting material is molded into the cutout of the potting body, such that the emission side of the component is covered with the second potting material.
Abstract:
In at least one embodiment of the method, the method is used to produce optoelectronic semiconductor components. A lead frame assemblage includes a plurality of lead frames. The lead frames each includes at least two lead frame parts and the lead frames in the lead frame assemblage are electrically connected to one another by connecting webs. The lead frame assemblage is fitted on an intermediate carrier. At least a portion of the connecting webs is removed and/or interrupted. Additional electrical connecting elements are fitted between adjacent lead frames and/or lead frame parts. A potting body mechanically connects the lead frame parts of the individual lead frames to one another. The resulting structure is singulated to form the semiconductor components.
Abstract:
An optoelectronic component includes a carrier, and a light source arranged on a surface of the carrier, said light source including at least one luminous surface formed by at least one light-emitting diode, wherein a transparent converter-free spacer is arranged on the luminous surface such that a distance is formed between the luminous surface and a spacer surface of the spacer facing away from the luminous surface, and wherein the light source is potted by a potting compound such that the spacer surface is formed extending flush with a potting compound surface facing away from the surface of the carrier and a surface formed by a spacer surface and the potting compound surface is plane.
Abstract:
A housing for an optical component is provided in various embodiments. The housing has a leadframe section and a mold compound. The leadframe section is formed from an electrically conductive material and has a first side and a second side facing away from the first side. On the first side, the leadframe section has at least one first receiving region for receiving the optical component and/or at least one contact region for electrically contacting the optical component. The leadframe section has at least one trench which is formed in the leadframe section on the first side thereof alongside the receiving region and/or the contact region. The leadframe section is embedded in the mold compound. The mold compound has at least one receiving recess in which the first receiving region and/or the contact region and the trench are arranged.
Abstract:
A housing includes a lead frame formed from electrically conductive material having first and second sides, a contact section contacting an electronic component at the first side, and at least one receiving section arranging the electronic component at the first side, wherein the contact and receiving sections are separated and the contact section is formed thinner than the receiving section in a direction perpendicular, a molding material having an opening, the receiving and contact regions exposed in the opening, and into which the leadframe is embedded such that part of the molding material is formed between the contact and receiving sections and the second side is covered by the molding material in the contact section, and the second side is free of molding material in the receiving section, wherein the molding material at the second side has at least one opening filled with the electrically insulating material.
Abstract:
A method can be used for producing an optoelectronic device. A first leadframe section with a component is provide. The component is designed to emit electromagnetic radiation on an emission side. The emission side faces away from the carrier. A second leadframe section is provided. In a first method step the component and the two leadframe sections are encapsulated with a first potting material in such a way that the component and the leadframe sections are embedded into a potting body, but wherein at least part of the emission area of the component remains free of the first potting material and a cutout is formed in the potting body at least above the emission area of the component. In a second method step a second potting material is molded into the cutout of the potting body, such that the emission side of the component is covered with the second potting material.
Abstract:
An optoelectronic component includes a carrier substrate; at least one light emitting semiconductor chip arranged on a surface of the carrier substrate; and a frame part at least laterally partly surrounding the light emitting semiconductor chip; and comprising an injection-molded body, and wherein the frame part includes an injection-molded body and a diaphragm part, the diaphragm part including a protuberance enclosed by the injection-molded body.
Abstract:
A method of producing a housing for an electronic device including: in a three-dimensional molding process, a housing part assembly consisting of a plurality of contiguous plastics housing parts is produced using a plastics material; and the housing part assembly is split up into a plurality of individual plastics housing parts by a separation procedure, each one of the parts forming at least a part of a housing, wherein the molding process is transfer molding or compression molding, a mold is used for the molding process including mold pins by which first side faces molded on during the molding process are produced on each of the plastics housing parts, the separation procedure results in second side faces being produced on each of the plastics housing parts, and the first and second side faces form outer faces of the plastics housing parts.