Abstract:
A semiconductor device which includes: a substrate; a first set of fins above the substrate of a first semiconductor material; a second set of fins above the substrate and of a second semiconductor material different than the first semiconductor material; and an isolation region positioned between the first and second sets of fins, the isolation region having a nitride layer. The isolation region may be an isolation pillar or an isolation trench.
Abstract:
The present disclosure is directed to a gate structure for a transistor. The gate structure is formed on a substrate and includes a trench. There are sidewalls that line the trench. The sidewalls have a first dimension at a lower end of the trench and a second dimension at an upper end of the trench. The first dimension being larger than the second dimension, such that the sidewalls are tapered from a lower region to an upper region. A high k dielectric liner is formed on the sidewalls and a conductive liner is formed on the high k dielectric liner. A conductive material is in the trench and is adjacent to the conductive liner. The conductive material has a first dimension at the lower end of the trench that is smaller than a second dimension at the upper end of the trench.
Abstract:
A high performance GAA FET is described in which vertically stacked silicon nanowires carry substantially the same drive current as the fin in a conventional FinFET transistor, but at a lower operating voltage, and with greater reliability. One problem that occurs in existing nanowire GAA FETs is that, when a metal is used to form the wrap-around gate, a short circuit can develop between the source and drain regions and the metal gate portion that underlies the channel. The vertically stacked nanowire device described herein, however, avoids such short circuits by forming insulating barriers in contact with the source and drain regions, prior to forming the gate. Through the use of sacrificial films, the fabrication process is almost fully self-aligned, such that only one lithography mask layer is needed, which significantly reduces manufacturing costs.
Abstract:
A semiconductor substrate includes a bulk substrate layer that extends along a first axis to define a width and a second axis perpendicular to the first axis to define a height. A plurality of hetero semiconductor fins includes an epitaxial material formed on a first region of the bulk substrate layer. A plurality of non-hetero semiconductor fins is formed on a second region of the bulk substrate layer different from the first region. The non-hetero semiconductor fins are integrally formed from the bulk substrate layer such that the material of the non-hetero semiconductor fins is different from the epitaxial material.
Abstract:
Dummy gates are removed from a pre-metal layer to produce a first opening (with a first length) and a second opening (with a second length longer than the first length). Work function metal for a metal gate electrode is provided in the first and second openings. Tungsten is deposited to fill the first opening and conformally line the second opening, thus leaving a third opening. The thickness of the tungsten layer substantially equals the length of the first opening. The third opening is filled with an insulating material. The tungsten is then recessed in both the first and second openings using a dry etch to substantially a same depth from a top surface of the pre-metal layer to complete the metal gate electrode. Openings left following the recess operation are then filled with a dielectric material forming a cap on the gate stack which includes the metal gate electrode.
Abstract:
A FinFET includes a semiconductor fin supporting a first transistor and a second transistor. A first transistor gate electrode extends over a first channel region of the fin and a second transistor gate electrode extends over a second channel region of the fin. Epitaxial growth material on a top of the fin forms a raised source region on a first side of the first transistor gate electrode, an intermediate region between a second side of the first transistor gate electrode and a first side of the second transistor gate electrode, and a raised drain region on a second side of the second transistor gate electrode. The first and second transistor gate electrodes are short circuit connected to each other, with the first transistor configured to have a first threshold voltage and the second transistor configured to have a second threshold voltage different from the first threshold voltage.
Abstract:
A semiconductor device that a fin structure, and a gate structure present on a channel region of the fin structure. A composite spacer is present on a sidewall of the gate structure including an upper portion having a first dielectric constant, a lower portion having a second dielectric constant that is less than the first dielectric constant, and an etch barrier layer between sidewalls of the first and second portion of the composite spacer and the gate structure. The etch barrier layer may include an alloy including at least one of silicon, boron and carbon.
Abstract:
A semiconductor substrate includes a bulk substrate layer that extends along a first axis to define a width and a second axis perpendicular to the first axis to define a height. A plurality of hetero semiconductor fins includes an epitaxial material formed on a first region of the bulk substrate layer. A plurality of non-hetero semiconductor fins is formed on a second region of the bulk substrate layer different from the first region. The non-hetero semiconductor fins are integrally formed from the bulk substrate layer such that the material of the non-hetero semiconductor fins is different from the epitaxial material.
Abstract:
A method for making a semiconductor device includes forming laterally spaced-apart semiconductor fins above a substrate. At least one dielectric layer is formed adjacent an end portion of the semiconductor fins and within the space between adjacent semiconductor fins. A pair of sidewall spacers is formed adjacent outermost semiconductor fins at the end portion of the semiconductor fins. The at least one dielectric layer and end portion of the semiconductor fins between the pair of sidewall spacers are removed. Source/drain regions are formed between the pair of sidewall spacers.
Abstract:
A semiconductor device includes a fin patterned in a substrate; a gate disposed over and substantially perpendicular to the fin; a pair of epitaxial contacts including a III-V material over the fin and on opposing sides of the gate; and a channel region between the pair of epitaxial contacts under the gate including an undoped III-V material between doped III-V materials, the doped III-V materials including a dopant in an amount in a range from about 1e18 to about 1e20 atoms/cm3 and contacting the epitaxial contacts.