Abstract:
In one example, a method includes providing a first side of a semiconductor substrate with a plurality of transistors, etching a second side of the substrate, opposite the first side, with a pattern of trenches, the trenches having a pre-defined depth and width, and providing the etched semiconductor substrate in a package. In one example, the predefined depth and width of the trenches is such so as to increase the surface area of the second side of the substrate by at least 20 percent. In one example, the method also includes providing a layer of a thermal interface material (TIM) on the second side of the substrate, including to fill at least a portion of the trenches.
Abstract:
A chip package assembly and method for fabricating the same are provided which incorporate phase change materials within the chip package assembly for improved thermal management. In one example, a chip package assembly is provided that includes a substrate, a first integrated circuit (IC) die stacked on the substrate, a dielectric filler layer, a cover and a phase change material. The phase change material is sealed within a recess formed between the first IC dies and the cover.
Abstract:
A chip package assembly and method for fabricating the same are provided which utilize a plurality of electrically floating heat transfer structures for improved thermal management. In one example, a chip package assembly is provided. The chip package assembly includes a substrate, a first integrated circuit (IC) die and a plurality of electrically floating conductive heat transfer structures. The substrate has a first surface and an opposing second surface. The first IC die has a first surface, an opposing second surface, and four lateral sides. The second surface of the first IC die is mounted to the first surface of the substrate. The plurality of electrically floating conductive heat transfer structures extend in a first direction defined between the first and second surfaces of the first IC die. A first conductive heat transfer structure of the plurality of electrically floating conductive heat transfer structures are part of a first conductive heat transfer path having a length in the first direction at least as long as a distance between the first and second surfaces.
Abstract:
Examples of the present disclosure provide example Chip Scale Packages (CSPs). In some examples, a structure includes a first integrated circuit die, a shim die that does not include active circuitry thereon, an encapsulant at least laterally encapsulating the first integrated circuit die and the shim die, and a redistribution structure on the first integrated circuit die, the shim die, and the encapsulant. The redistribution structure includes one or more metal layers electrically connected to the first integrated circuit die.
Abstract:
Examples described herein provide for an electronic device apparatus with multiple thermally conductive paths for heat dissipation. In an example, an electronic device apparatus includes a package comprising a die attached to a package substrate. The electronic device apparatus further includes a ring stiffener disposed around the die and on the package substrate, a heat sink disposed on the package, and a wedge disposed between the heat sink and the ring stiffener.
Abstract:
Methods and apparatus are described for enabling copper-to-copper (Cu—Cu) bonding at reduced temperatures (e.g., at most 200° C.) by significantly reducing Cu oxide formation. These techniques provide for faster cycle time and entail no extraordinary measures (e.g., forming gas). Such techniques may also enable longer queue (Q) or staging times. One example semiconductor structure generally includes a semiconductor layer, an adhesion layer disposed above the semiconductor layer, an anodic metal layer disposed above the adhesion layer, and a cathodic metal layer disposed above the anodic metal layer. An oxidation potential of the anodic metal layer may be greater than an oxidation potential of the cathodic metal layer. Such a semiconductor structure may be utilized in fabricating IC packages implementing 2.5D or 3D integration.
Abstract:
Methods and apparatus are described for heat management in an integrated circuit (IC) package using a lid with recessed areas in the inner surfaces of the lid. The recessed areas (e.g., trenches) provide receptacles for accepting a portion of a thermal interface material (TIM) that may be forced out when the lid is positioned on the TIM above one or more integrated circuit (IC) dies during fabrication of the IC package. In this manner, the TIM bond line thickness (BLT) between the lid and the IC die(s) may be reduced for decreased thermal resistance, but sufficient interfacial adhesion is provided for the IC package with such a lid to avoid TIM delamination.
Abstract:
Integrated (IC) package testing systems and methods for testing an IC package are provided herein that accommodate IC packages having different die heights. In one example, the IC package testing system includes a test fixture base, a socket, and a test fixture head. The socket is disposed on the test fixture base and configured to receive an IC package for testing. The test fixture head is movable towards and away from the base. The test fixture head includes a base plate and a plurality of independently movable pushers. The plurality of pushers are configured to engage the IC package disposed the socket.
Abstract:
Examples generally provide a stacked silicon interconnect product and method of manufacture. The stacked silicon interconnect product includes a silicon substrate-less interposer comprising a plurality of metallization layers, wherein at least one metallization layer includes a plurality of metal segments separated by dielectric material. The stacked silicon interconnect product also includes a first die coupled to a first side of the silicon substrate-less interposer via a first plurality of microbumps. The stacked silicon interconnect product further includes a second die coupled to a second side of the silicon substrate-less interposer via a second plurality of microbumps, the second die communicatively coupled to the first die through a metallization layer of the plurality of metallization layers.
Abstract:
An integrated circuit includes a stacked conductive layer interposer and a first die at least partially encapsulated in a mold material. The first die is mechanically and electrically attached to a top surface of the stacked conductive layer interposer using solder bumps. The integrated circuit further includes a first warpage correction layer.