Abstract:
Examples generally provide a stacked silicon interconnect product and method of manufacture. The stacked silicon interconnect product includes a silicon substrate-less interposer comprising a plurality of metallization layers, wherein at least one metallization layer includes a plurality of metal segments separated by dielectric material. The stacked silicon interconnect product also includes a first die coupled to a first side of the silicon substrate-less interposer via a first plurality of microbumps. The stacked silicon interconnect product further includes a second die coupled to a second side of the silicon substrate-less interposer via a second plurality of microbumps, the second die communicatively coupled to the first die through a metallization layer of the plurality of metallization layers.
Abstract:
An integrated circuit includes a stacked conductive layer interposer and a first die at least partially encapsulated in a mold material. The first die is mechanically and electrically attached to a top surface of the stacked conductive layer interposer using solder bumps. The integrated circuit further includes a first warpage correction layer.
Abstract:
A substrate-less interposer for a stacked silicon interconnect technology (SSIT) product, includes: a plurality of metallization layers, at least a bottom most layer of the metallization layers comprising a plurality of metal segments, wherein each of the plurality of metal segments is formed between a top surface and a bottom surface of the bottom most layer of the metallization layers, and the metal segments are separated by dielectric material in the bottom most layer; and a dielectric layer formed on the bottom surface of the bottom most layer, wherein the dielectric layer includes one or more openings for providing contact to the plurality of metal segments in the bottom most layer.
Abstract:
Implementations described herein generally relate to chip packaging, and in particular, to solder bump structures for a semiconductor device and methods of fabricating the same. In one implementation, a solder bump assembly is provided. The solder bump assembly comprises a conductive bond pad formed on a substrate. A conductive pillar is formed on the conductive bond pad. A plating layer is formed on the conductive pillar, wherein the plating layer comprises copper and nickel. A solder bump is formed on the plating layer in electrical communication with the plating layer. The plating layer may be a bi-layer structure comprising a nickel layer formed on the conductive pillar and a copper layer formed on the nickel layer in electrical communication with the solder bump. The plating layer may be a copper-nickel alloy.
Abstract:
In one example, a semiconductor assembly comprises a first IC die, a second IC die, and a bridge module. The first IC die includes, on a top side thereof, first interconnects of a plurality of interconnects and first inter-die contacts of a plurality of inter-die contacts. The second IC die includes, on a top side thereof, second interconnects of the plurality of interconnects and second inter-die contacts of the plurality of inter-die contracts. The bridge module is disposed between the first interconnects and the second interconnects and includes bridge interconnects on a top side thereof, the bridge interconnects mechanically and electrically coupled to the plurality of inter-die contacts, and layer(s) of conductive interconnect disposed on the top side thereof to route signals between the first IC and the second IC. A back side of the bridge module does not extend beyond a height of the plurality of interconnects.
Abstract:
A multi-layer core organic package substrate includes: a multi-layer core comprising at least two organic core layers, wherein two of the at least two organic core layers are separated by a core metal layer; a first plurality of build-up layers formed on top of the multi-core layer; and a second plurality of build-up layers formed below the multi-core layer.
Abstract:
Examples generally provide a stacked silicon interconnect product and method of manufacture. The stacked silicon interconnect product includes a silicon substrate-less interposer comprising a plurality of metallization layers, wherein at least one metallization layer includes a plurality of metal segments separated by dielectric material. The stacked silicon interconnect product also includes a first die coupled to a first side of the silicon substrate-less interposer via a first plurality of microbumps. The stacked silicon interconnect product further includes a second die coupled to a second side of the silicon substrate-less interposer via a second plurality of microbumps, the second die communicatively coupled to the first die through a metallization layer of the plurality of metallization layers.
Abstract:
Techniques for providing a unified underfill and encapsulation for integrated circuit die assemblies. These techniques include a molding technique that includes dipping a die assembly including a substrate and one or more dies into a chamber having molding material, sealing the chamber, and lowering pressure in the chamber to coax the molding material into space between the die(s) and substrate. The use of this molding technique, as contrasted with a capillary underfill technique in which underfill material is laid down adjacent dies and fills space under the die via capillary action, provides several benefits. One benefit is that the molding material can include a higher silica particle filler content (% by weight) than the material for the capillary underfill technique, which improves CTE. Another benefit is that various design constraints related to, for example, warpage and partial underfill are eliminated or improved.
Abstract:
A TSV interposer having a reinforced edge and methods for fabricating an IC package utilizing the same are provided. In one embodiment, a chip package includes an interposer having a wiring layer and a die disposed on a surface of the interposer. The die is electrically connected to the wiring layer of the interposer. A die underfill material is disposed between the interposer and the die. The die underfill material at least partially covers a side of the die that extends away from the surface of the interposer. Stiffening material is disposed in contact with the interposer and the die underfill material.
Abstract:
In an example, an integrated circuit (IC) package includes a package substrate, an IC die, solder bumps, a first plurality of trenches, and underfill material. The IC die includes a front surface and a back surface, the front surface facing the package substrate and including a conductive interface. The solder bumps couple the conductive interface to the package substrate. The first plurality of trenches includes at least one trench proximate each corner of the IC die formed in the front surface of the IC die in an area between the conductive interface and a perimeter of the IC die. The underfill material is disposed between the front surface of the IC die and the package substrate, the underfill material being in contact with the first plurality of trenches.