Abstract:
Methods for enhancing the mesoporosity of a zeolite-containing material. Such methods may comprise contacting a composite shaped article containing at least one zeolite and at least one non-zeolitic material with at least one pH controlling agent and at least one surfactant. Such methods may be performed under conditions sufficient to increase the pore volume of at least one 10 angstrom subset of mesoporosity.
Abstract:
A producing method of monocyclic aromatic hydrocarbons from the oil feedstock having a 10 volume % distillation temperature of more than or equal to 140° C. and a 90 volume % distillation temperature of less than or equal to 380° C. by bringing into contact with an aromatic production catalyst includes the steps of: introducing the oil feedstock into a cracking and reforming reaction apparatus housing the aromatic production catalyst; bringing the oil feedstock and the aromatic production catalyst into contact with each other at the inside of the cracking and reforming reaction apparatus; heating the oil feedstock in advance before introducing the oil feedstock into the cracking and reforming reaction apparatus and forming a two-phase gas-liquid stream; separating the two-phase gas-liquid stream into a gas fraction and a liquid fraction; and introducing the gas fraction and the liquid fraction at different positions of the cracking and reforming reaction apparatus.
Abstract:
A process for producing transportation fuels, such as gasoline and diesel fuel, from syngas with a low H2/CO ratio. The syngas is first converted to dimethyl ether which is then converted to gasoline by way of a dimethyl ether to gasoline process and to diesel fuel by way of a Fischer-Tropsch process.
Abstract:
Convert a methylamine (e.g. monomethylamine, dimethylamine and trimethylamine) to a mixture of olefins (e.g. ethylene, propylene and butylene) by placing the methylamine, optionally in a mixture with at least one of ammonia and an inert diluent, in contact with a microporous acidic silicoaluminophosphate catalyst or a microporous aluminosilicate catalyst.
Abstract:
This disclosure relates to a method for rejuvenating a catalyst, comprising contacting the catalyst with a gaseous feedstock at rejuvenation conditions for at least one hour to form a rejuvenated catalyst and a gaseous product, wherein the catalyst comprises at least 10 wt. % of a molecular sieve, wherein the catalyst prior to the contacting step comprises from 0.001 wt. % to 45 wt. % of hydrocarbons and 0.001 to 10 wt. % nitrogen containing components based on the total weight of the catalyst prior to the contacting step, wherein the molecular sieve comprises at least one of a MCM-22 family molecular sieve, a molecular sieve having a framework type of *BEA, a molecular sieve having a framework type of FAU, and a molecular sieve having a framework type of MOR, wherein the gaseous feedstock comprises at least one of N2, H2, alkane, He, Ar, CO, and CO2, wherein the gaseous product has at least a portion of the gaseous feedstock and at least a portion of the hydrocarbons of the catalyst and at least a portion of the nitrogen containing components of the catalyst, wherein the rejuvenation conditions comprise a temperature in the range from about 400 to 600° C., a pressure in the range from about 101.3 kPa-a to 10130 kPa-a, a space hourly velocity in the range of from 0.05 to 10 hr−1.
Abstract:
Hydrocracking processes and catalyst composition for use therein are provided. The catalyst compositions described herein include a mesoporous support material and at least one catalytic metal supported thereon. The mesoporous support material may comprise a single-phase crystalline mesostructured zeolite. Additionally, the mesoporous structure may exhibit long range crystallinity and include a plurality of mesopores defined within of the volume of the crystalline mesostructure. Suitable feedstocks for the hydrocracking processes according to embodiments of the present invention crude oil, a gas oil fraction, vacuum gas oil, and combinations thereof.
Abstract:
A method for controlling 2-isomer content in linear alkylbenzene obtained by alkylating benzene with olefins and catalyst used in the method.
Abstract:
A process for converting a solid biomass material comprising (a) mixing the solid biomass material with a fluid to form a fluidized biomass stream; and (b) propagating the fluidized biomass stream into the riser reactor via one or more delivery aperture(s); wherein the solid biomass material has a particle size distribution with a mean particle size diameter, and wherein the delivery aperture has a diameter equal to or more than three times the mean particle size diameter of the particle size distribution of the solid biomass material.
Abstract:
Process for preparing methyl acetate and/or acetic acid by contacting a carbonylatable reactant selected from dimethyl ether and methanol with carbon monoxide in the presence of a catalyst. The catalyst is a H-mordenite bound with a mesoporous binder selected from silicas, aluminas, silica-aluminas, magnesium silicates and magnesium aluminum silicates.
Abstract:
The multiple zeolite catalyst is a catalytic composition used to convert alkylaromatic hydrocarbons to BTX, particularly to commercially valuable xylenes. The catalyst is formed by mixing at least two zeolites selected from mordenite, beta zeolite, ZSM-5, ZSM-11, ZSM-12, ZSM-22, ZSM-23, MFI topology zeolite, NES topology zeolite, EU-1, MAPO-36, SAPO-5, SAPO-11, SAPO-34, and SAPO-41, and adding at least one metal component selected from Group VI of the Periodic Table of the Elements. The two zeolites have different physical and chemical characteristics, such as pore size and acidity. An exemplary catalyst includes mordenite, ZSM-5, and 3 wt % molybdenum. The multiple zeolite catalyst may further be used to convert toluene to mixed xylene isomers, particularly with a ZSM-5:mordenite ratio of 2:1 by weight.