Abstract:
To provide nanotweezers and a nanomanipulator which allow great miniaturization of the component and are capable of gripping various types of nano-substances such as insulators, semiconductors and conductors and of gripping nano-substances of various shapes. Electrostatic nanotweezers 2 are characterized in that the nanotweezers 2 are comprised of a plurality of nanotubes whose base end portions are fastened to a holder 6 so that the nanotubes protrude from the holder 6, coating films which insulate and cover the surfaces of the nanotubes, and lead wires 10, 10 which are connected to two of the nanotubes 8, 9; and the tip ends of the two nanotubes are freely opened and closed by means of an electrostatic attractive force generated by applying a voltage across these lead wires. Furthermore, by way of forming a piezo-electric film 32 on the surface of the nanotube 9, and the tip ends of the nanotubes are freely opened and closed by expanding and contracting the piezo-electric film, thus allowing any desired nano-substances to be handled regardless of whether the nano-substances are insulators, semiconductors or conductors. Furthermore, if by way of designing three nanotubes so as to be freely opened and closed by an electrostatic system, nano-substances of various shapes such as spherical, rod-form, etc. can be handled. Moreover, a nanomanipulator that is constructed by combining the nanotweezers with a three-dimensional driving mechanism facilitates the gripping, moving and releasing of nano-substances.
Abstract:
To provide nanotweezers and a nanomanipulator which allow great miniaturization of the component and are capable of gripping various types of nano-substances such as insulators, semiconductors and conductors and of gripping nano-substances of various shapes. Electrostatic nanotweezers 2 are characterized in that the nanotweezers 2 are comprised of a plurality of nanotubes whose base end portions are fastened to a holder 6 so that the nanotubes protrude from the holder 6, coating films which insulate and cover the surfaces of the nanotubes, and lead wires 10, 10 which are connected to two of the nanotubes 8, 9; and the tip ends of the two nanotubes are freely opened and closed by means of an electrostatic attractive force generated by applying a voltage across these lead wires. Furthermore, by way of forming a piezo-electric film 32 on the surface of the nanotube 9, and the tip ends of the nanotubes are freely opened and closed by expanding and contracting the piezo-electric film, thus allowing any desired nano-substances to be handled regardless of whether the nano-substances are insulators, semiconductors or conductors. Furthermore, if by way of designing three nanotubes so as to be freely opened and closed by an electrostatic system, nano-substances of various shapes such as spherical, rod-form, etc. can be handled. Moreover, a nanomanipulator that is constructed by combining the nanotweezers with a three-dimensional driving mechanism facilitates the gripping, moving and releasing of nano-substances.
Abstract:
A micro-tip is manufactured by forming a recess portion on a first substrate consisting of monocrystalline silicon for forming a tip. A peeling layer is formed on the recess portion, and contact layer is formed on at least a portion other than the peeling layer on the substrate. A tip material layer is formed on the peeling layer and the contact layer. The tip material layer on the peeling layer is transferred onto a second substrate.
Abstract:
A method of manufacturing a plurality of through-holes in a layer of first material, for example for the manufacturing of a probe comprising a tip containing a channel. To manufacture the through-holes in a batch process, a layer of first material is deposited on a wafer comprising a plurality of pits a second layer is provided on the layer of first material, and the second layer is provided with a plurality of holes at central locations of the pits; using the second layer as a shadow mask when depositing a third layer at an angle, covering a part of the first material with said third material at the central locations, and etching the exposed parts of the first layer using the third layer as a protective layer.
Abstract:
The invention provides a fabrication method of batch producing nano-scale structures, such as arrays of silicon pillars of high aspect ratio. The invention also relates to providing arrays of high aspect ratio silicon pillars fabricated using the improved fabrication method. The array of silicon pillars is fabricated from arrays of low aspect ratio pyramid-shaped structures. Mask formed from a hard material, such as a metal mask, is formed on top of each of the pyramid-shaped structures in a batch process. The pyramid-shaped structures are subsequently etched to remove substrate materials not protected by the hard masks, so that a high aspect ratio pillar or shaft is formed on the pyramid-shaped low aspect ratio base, resulting in an array of high aspect ratio silicon pillars.
Abstract:
The invention provides a fabrication method of batch producing nano-scale structures, such as arrays of silicon pillars of high aspect ratio. The invention also relates to providing arrays of high aspect ratio silicon pillars fabricated using the improved fabrication method. The array of silicon pillars is fabricated from arrays of low aspect ratio pyramid-shaped structures. Mask formed from a hard material, such as a metal mask, is formed on top of each of the pyramid-shaped structures in a batch process. The pyramid-shaped structures are subsequently etched to remove substrate materials not protected by the hard masks, so that a high aspect ratio pillar or shaft is formed on the pyramid-shaped low aspect ratio base, resulting in an array of high aspect ratio silicon pillars.
Abstract:
A method for making a carbon nanotube micro-tip structure is disclosed. A carbon nanotube film structure and an insulting substrate are provided. The insulating substrate includes a surface. At least one strip-shaped recess is defined at the surface. The carbon nanotube film structure is covered on the surface of the insulating substrate, and has a suspended portion covered on the at least one strip-shaped recess. The suspended portion of the carbon nanotube film structure is laser etched, to define a first hollow pattern in the suspended portion and form a patterned carbon nanotube film structure according to the first hollow pattern. The patterned carbon nanotube film structure includes two strip-shaped arms. The two strip-shaped arms are joined at one end to form a tip portion. The tip portion is suspended above the strip-shaped recess.
Abstract:
Transferable probe tips including a metallic probe, a delamination layer covering a portion of the metallic probe, and a bonding alloy, wherein the bonding alloy contacts the metallic probe at a portion of the probe that is not covered by the delamination layer are provided herein. Also, techniques for creating a transferable probe tip are provided, including etching a handler substrate to form one or more via arrays, depositing a delamination layer in each via array, depositing one or more metals in each via array to form a probe tip structure, and depositing a bonding alloy on a portion of the probe tip structure that is not covered by the delamination layer. Additionally, techniques for transferring transferable probe tips are provided, including removing a handler substrate from a probe tip structure, and transferring the probe tip structure via flip-chip joining the probe tip structure to a target probe head substrate.
Abstract:
In a process for assembling a microstructure (1), provision is made of a first microstructure piece (2) having a receiving recess (3) in its surface and a second microstructure piece (5) having a connecting region (6) fitting into the receiving recess (3) and on which is arranged at least one electrical contact element (7a, 7b). Provision is made of a flexible cable (8) having a flat substrate layer (9) made of an electrically insulating material and at least one strip conductor (10) arranged thereon. The cable (8) has at least one tongue (14a, 14b) on which is arranged at least one counter-contact element (11a, 11b) connected to the strip conductor (10). The cable (8) and the microstructure pieces (5) are positioned relative to each other in a preassembly position in which the connecting region (6) is opposite the receiving recess (3) and the tongue (14a, 14b) is aligned between the connecting region (6) and the receiving recess (3). The connecting region (6) is then introduced in the receiving recess (3) by displacement of the microstructure pieces (2, 5) toward one another. In doing so the at least one tongue (14a, 14b) is deflected in the receiving recess (3) in such a way that the at least one counter-contact element (11a, 11b) contacts the at least one contact element (7a, 7b).
Abstract:
Nano-electromechanical device having an electrically conductive nano-cantilever wherein the nano-cantilever has a free end that is movable relative to an electrically conductive substrate such as an electrode of a circuit. The circuit includes a power source connected to the electrode and to the nano-cantilever for providing a pull-in or pull-out voltage therebetween to effect bending movement of the nano-cantilever relative to the electrode. Feedback control is provided for varying the voltage between the electrode and the nano-cantilever in response to the position of the cantilever relative to the electrode. The device provides two stable positions of the nano-cantilever and a hysteresis loop in the current-voltage space between the pull-in voltage and the pull-out voltage. A first stable position of the nano-cantilever is provided at sub-nanometer gap between the free end of the nano-cantilever and the electrode with a pull-in voltage applied and with a stable tunneling electrical current present in the circuit. A second stable position of the nano-cantilever is provided with a pull-out voltage between the cantilever and the electrode with little or no tunneling electrical current present in the circuit. The nano-electromechanical device can be used in a scanning probe microscope, ultrasonic wave detection sensor, NEMS switch, random access memory element, gap sensor, logic device, and a bio-sensor when the nano-cantilever is functionalized with biomolecules that interact with species present in the ambient environment be them in air or aqueous solutions. In the latest case, the NEMS needs to be integrated with a microfluidic system.