Abstract:
Micromechanical membranes suitable for formation of mechanical resonating structures are described, as well as methods for making such membranes. The membranes may be formed by forming cavities in a substrate, and in some instances may be oxidized to provide desired mechanical properties. Mechanical resonating structures may be formed from the membrane and oxide structures.
Abstract:
In one embodiment, a method of forming a MEMS device includes providing a substrate, forming a sacrificial layer above the substrate layer, forming a silicon based working portion on the sacrificial layer, releasing the silicon based working portion from the sacrificial layer such that the working portion includes at least one exposed outer surface, forming a first layer of silicide forming metal on the at least one exposed outer surface of the silicon based working portion, and forming a first silicide layer with the first layer of silicide forming metal.
Abstract:
A method of forming a thick polysilicon layer for a MEMS inertial sensor includes forming a first amorphous polysilicon film on a substrate in an elevated temperature environment for a period of time such that a portion of the amorphous polysilicon film undergoes crystallization and grain growth at least near the substrate. The method also includes forming an oxide layer on the first amorphous polysilicon film, annealing the first amorphous polysilicon film in an environment of about 1100° C. or greater to produce a crystalline film, and removing the oxide layer. Lastly, the method includes forming a second amorphous polysilicon film on a surface of the crystalline polysilicon film in an elevated temperature environment for a period of time such that a portion of the second amorphous polysilicon film undergoes crystallization and grain growth at least near the surface of the crystalline polysilicon film.
Abstract:
A method of forming a thick polysilicon layer for a MEMS inertial sensor includes forming a first amorphous polysilicon film on a substrate in an elevated temperature environment for a period of time such that a portion of the amorphous polysilicon film undergoes crystallization and grain growth at least near the substrate. The method also includes forming an oxide layer on the first amorphous polysilicon film, annealing the first amorphous polysilicon film in an environment of about 1100° C. or greater to produce a crystalline film, and removing the oxide layer. Lastly, the method includes forming a second amorphous polysilicon film on a surface of the crystalline polysilicon film in an elevated temperature environment for a period of time such that a portion of the second amorphous polysilicon film undergoes crystallization and grain growth at least near the surface of the crystalline polysilicon film.
Abstract:
A micro-electro-mechanical (MEM) device and an electronic device are fabricated on a common substrate by fabricating the electronic device comprising a plurality of electronic components on the common substrate, depositing a thermally stable interconnect layer on the electronic device, encapsulating the interconnected electronic device with a protective layer, forming a sacrificial layer over the protective layer, opening holes in the sacrificial layer and the protective layer to allow the connection of the MEM device to the electronic device, fabricating the MEM device by depositing and patterning at least one layer of amorphous silicon, and removing at least a portion of the sacrificial layer. In this way, the MEM device can be fabricated after the electronic device on the same substrate.
Abstract:
A process for micromachining capillaries was having circular cross-sections in glass substrates. Microchannels are isotropically etched into a flat glass substrate, resulting in a semi-circular half-channel (or a rectangle with rounded corners). A second flat glass substrate is then fusion bonded to the first substrate, producing sealed microchannels with rounded bottom corners and a flat top surface having sharp corners. The process is completed by annealing at a sufficiently high temperature (approximately 750 C.) to allow surface tension forces and diffusional effects to lower the over-all energy of the microchannels by transforming the cross-section to a circular shape. The process can be used to form microchannels with circular cross-sections by etching channels into a glass substrate, then anodically bonding to a silicon wafer and annealing. The process will work with other materials such as polymers.
Abstract:
A method of providing a predetermined level and state of stress in a film deposited on a surface of a substrate. In one embodiment, a layer of crystalline material is deposited on a surface of a substrate and then a layer of amorphous material is deposited on the layer of crystalline material. Then, the layers are heated, causing the amorphous material to crystallize. Such crystallization reduces, or even changes the state of, stress in the amorphous layer, which in turn alters the forces applied by the layer to adjacent regions of the substrate. The method may be used for filling a deep-trench capacitor of the type used in trench-storage DRAMs.
Abstract:
MEMS structure, comprising: a semiconductor body; a cavity buried in the semiconductor body; a membrane suspended on the cavity; and at least one antistiction bump completely contained in the cavity with the function of preventing the side of the membrane internal to the cavity from sticking to the opposite side, which delimits the cavity downwardly.
Abstract:
A mechanism for reducing stiction in a MEMS device by decreasing an amount of carbon from TEOS-based silicon oxide films that can accumulate on polysilicon surfaces during fabrication is provided. A carbon barrier material film is deposited between one or more polysilicon layer in a MEMS device and the TEOS-based silicon oxide layer. This barrier material blocks diffusion of carbon into the polysilicon, thereby reducing accumulation of carbon on the polysilicon surfaces. By reducing the accumulation of carbon, the opportunity for stiction due to the presence of the carbon is similarly reduced.
Abstract:
A method for forming an actuator layer of a MEMS device is disclosed. The method comprising etching the actuator layer and annealing the actuator layer after etching to reduce surface roughness of the MEMS device.