Coated Capacitive Sensor
    32.
    发明申请
    Coated Capacitive Sensor 审中-公开
    涂层电容传感器

    公开(公告)号:US20130032904A1

    公开(公告)日:2013-02-07

    申请号:US13197981

    申请日:2011-08-04

    Abstract: In one embodiment, a method of forming a MEMS device includes providing a substrate, forming a sacrificial layer above the substrate layer, forming a silicon based working portion on the sacrificial layer, releasing the silicon based working portion from the sacrificial layer such that the working portion includes at least one exposed outer surface, forming a first layer of silicide forming metal on the at least one exposed outer surface of the silicon based working portion, and forming a first silicide layer with the first layer of silicide forming metal.

    Abstract translation: 在一个实施例中,形成MEMS器件的方法包括提供衬底,在衬底层上形成牺牲层,在牺牲层上形成硅基工作部分,从牺牲层释放硅基工作部分,使得工作 部分包括至少一个暴露的外表面,在硅基工作部分的至少一个暴露的外表面上形成第一层硅化物形成金属,以及形成具有第一层硅化物形成金属的第一硅化物层。

    Polysilicon deposition and anneal process enabling thick polysilicon films for MEMS applications
    33.
    发明授权
    Polysilicon deposition and anneal process enabling thick polysilicon films for MEMS applications 有权
    多晶硅沉积和退火工艺可实现MEMS应用的厚多晶硅膜

    公开(公告)号:US07754617B2

    公开(公告)日:2010-07-13

    申请号:US12098052

    申请日:2008-04-04

    Abstract: A method of forming a thick polysilicon layer for a MEMS inertial sensor includes forming a first amorphous polysilicon film on a substrate in an elevated temperature environment for a period of time such that a portion of the amorphous polysilicon film undergoes crystallization and grain growth at least near the substrate. The method also includes forming an oxide layer on the first amorphous polysilicon film, annealing the first amorphous polysilicon film in an environment of about 1100° C. or greater to produce a crystalline film, and removing the oxide layer. Lastly, the method includes forming a second amorphous polysilicon film on a surface of the crystalline polysilicon film in an elevated temperature environment for a period of time such that a portion of the second amorphous polysilicon film undergoes crystallization and grain growth at least near the surface of the crystalline polysilicon film.

    Abstract translation: 形成用于MEMS惯性传感器的厚多晶硅层的方法包括在高温环境中在衬底上形成第一非晶多晶硅膜一段时间,使得非晶多晶硅膜的一部分经历结晶并且晶粒生长至少接近 底物。 该方法还包括在第一非晶多晶硅膜上形成氧化物层,在约1100℃或更高的环境中退火第一非晶多晶硅膜以产生结晶膜,并除去氧化物层。 最后,该方法包括在高温环境下在晶体多晶硅膜的表面上形成第二非晶多晶硅膜一段时间,使得第二非晶多晶硅膜的一部分在至少在表面附近发生结晶和晶粒生长 晶体多晶硅膜。

    Polysilicon Deposition and Anneal Process Enabling Thick Polysilicon Films for MEMS Applications
    34.
    发明申请
    Polysilicon Deposition and Anneal Process Enabling Thick Polysilicon Films for MEMS Applications 有权
    用于MEMS应用的多晶硅沉积和退火工艺使厚的多晶硅膜

    公开(公告)号:US20090042372A1

    公开(公告)日:2009-02-12

    申请号:US12098052

    申请日:2008-04-04

    Abstract: A method of forming a thick polysilicon layer for a MEMS inertial sensor includes forming a first amorphous polysilicon film on a substrate in an elevated temperature environment for a period of time such that a portion of the amorphous polysilicon film undergoes crystallization and grain growth at least near the substrate. The method also includes forming an oxide layer on the first amorphous polysilicon film, annealing the first amorphous polysilicon film in an environment of about 1100° C. or greater to produce a crystalline film, and removing the oxide layer. Lastly, the method includes forming a second amorphous polysilicon film on a surface of the crystalline polysilicon film in an elevated temperature environment for a period of time such that a portion of the second amorphous polysilicon film undergoes crystallization and grain growth at least near the surface of the crystalline polysilicon film.

    Abstract translation: 形成用于MEMS惯性传感器的厚多晶硅层的方法包括在高温环境中在衬底上形成第一非晶多晶硅膜一段时间,使得非晶多晶硅膜的一部分经历结晶并且晶粒生长至少接近 底物。 该方法还包括在第一非晶多晶硅膜上形成氧化物层,在约1100℃或更高的环境中退火第一非晶多晶硅膜以产生结晶膜,并除去氧化物层。 最后,该方法包括在高温环境下在晶体多晶硅膜的表面上形成第二非晶多晶硅膜一段时间,使得第二非晶多晶硅膜的一部分在至少在表面附近发生结晶和晶粒生长 晶体多晶硅膜。

    Fabrication of advanced silicon-based MEMS devices
    35.
    发明授权
    Fabrication of advanced silicon-based MEMS devices 有权
    先进的硅基MEMS器件的制造

    公开(公告)号:US07160752B2

    公开(公告)日:2007-01-09

    申请号:US11242960

    申请日:2005-10-05

    Abstract: A micro-electro-mechanical (MEM) device and an electronic device are fabricated on a common substrate by fabricating the electronic device comprising a plurality of electronic components on the common substrate, depositing a thermally stable interconnect layer on the electronic device, encapsulating the interconnected electronic device with a protective layer, forming a sacrificial layer over the protective layer, opening holes in the sacrificial layer and the protective layer to allow the connection of the MEM device to the electronic device, fabricating the MEM device by depositing and patterning at least one layer of amorphous silicon, and removing at least a portion of the sacrificial layer. In this way, the MEM device can be fabricated after the electronic device on the same substrate.

    Abstract translation: 通过在公共衬底上制造包括多个电子部件的电子器件,在公共衬底上制造微电子机械(MEM)器件和电子器件,在电子器件上沉积热稳定的互连层,封装互连 具有保护层的电子器件,在保护层上形成牺牲层,牺牲层中的开孔和保护层,以允许MEM器件与电子器件的连接,通过沉积和图案化制造MEM器件至少一个 非晶硅层,并且去除牺牲层的至少一部分。 以这种方式,MEM装置可以在同一基板上的电子装置之后制造。

    Method for producing microchannels having circular cross-sections in glass
    36.
    发明申请
    Method for producing microchannels having circular cross-sections in glass 审中-公开
    玻璃中具有圆形截面的微通道的方法

    公开(公告)号:US20020174686A1

    公开(公告)日:2002-11-28

    申请号:US09851231

    申请日:2001-05-07

    Abstract: A process for micromachining capillaries was having circular cross-sections in glass substrates. Microchannels are isotropically etched into a flat glass substrate, resulting in a semi-circular half-channel (or a rectangle with rounded corners). A second flat glass substrate is then fusion bonded to the first substrate, producing sealed microchannels with rounded bottom corners and a flat top surface having sharp corners. The process is completed by annealing at a sufficiently high temperature (approximately 750 C.) to allow surface tension forces and diffusional effects to lower the over-all energy of the microchannels by transforming the cross-section to a circular shape. The process can be used to form microchannels with circular cross-sections by etching channels into a glass substrate, then anodically bonding to a silicon wafer and annealing. The process will work with other materials such as polymers.

    Abstract translation: 用于微加工毛细管的方法在玻璃基底中具有圆形横截面。 微通道被各向同性地蚀刻成平坦的玻璃基板,产生半圆形的半通道(或具有圆角的矩形)。 然后将第二平板玻璃基板熔合到第一基板上,产生具有圆形底角的密封微通道和具有锐角的平坦顶表面。 该过程通过在足够高的温度(约750℃)下退火来完成,以通过将横截面变换为圆形形状来允许表面张力和扩散效应来降低微通道的总能量。 该方法可以用于通过将通道蚀刻到玻璃基板中,然后阳极结合到硅晶片和退火来形成具有圆形横截面的微通道。 该方法将与其他材料如聚合物一起使用。

    Reducing MEMS stiction by introduction of a carbon barrier
    39.
    发明授权
    Reducing MEMS stiction by introduction of a carbon barrier 有权
    通过引入碳屏障来减少MEMS静电

    公开(公告)号:US09463973B2

    公开(公告)日:2016-10-11

    申请号:US14529824

    申请日:2014-10-31

    Abstract: A mechanism for reducing stiction in a MEMS device by decreasing an amount of carbon from TEOS-based silicon oxide films that can accumulate on polysilicon surfaces during fabrication is provided. A carbon barrier material film is deposited between one or more polysilicon layer in a MEMS device and the TEOS-based silicon oxide layer. This barrier material blocks diffusion of carbon into the polysilicon, thereby reducing accumulation of carbon on the polysilicon surfaces. By reducing the accumulation of carbon, the opportunity for stiction due to the presence of the carbon is similarly reduced.

    Abstract translation: 提供了一种用于通过减少在制造期间可能积聚在多晶硅表面上的基于TEOS的氧化硅膜的碳来减少MEMS器件中的静电的机制。 在MEMS器件中的一个或多个多晶硅层和基于TEOS的氧化硅层之间沉积碳阻挡材料膜。 该阻挡材料阻止碳扩散到多晶硅中,从而减少碳在多晶硅表面上的积累。 通过减少碳的积累,由于碳的存在而导致的静电机会同样地减少。

Patent Agency Ranking