Abstract:
A negative ion beam source includes a heated refractory metal ribbon which is positioned adjacent a beam forming electrode that is, biased to repel positive ions emitted from the metal ribbon. An extraction electrode is juxtaposed to the beam forming electrode and includes an aperture for passing a beam of positive ions generated by the metal ribbon. The extraction electrode includes a cesium chamber with openings that are directed towards the refractory metal ribbon. A heater heats the cesium chamber and causes it to expel cesium neutrals towards a surface of the refractory metal ribbon where the cesium neutrals are ionized to positively charged cesium ions. A target is displaced to one side of a perpendicular from the surface of the refractory metal ribbon and is positioned adjacent a negative ion beam forming electrode that is biased to attract the cesium ion beam and to repel negative ions produced by cesium ion bombardment of the target. A negative ion extraction electrode is positioned to another side of the perpendicular line and is biased to repel the cesium ion beam and to attract and pass negative ions formed by bombardment of the target.
Abstract:
For simplifying the structure of a metal ion source, in particular for imnting into semiconductor wafers small doses of metals which are hard to vaporize, the metal ion source includes an electrically heatable thermionic cathode in the form of a heating wire within an ion chamber, the heating wire being arranged adjacent a metallic component, which consists of the metal intended to give off the metal ions, and being essentially at the potential of the metallic component.
Abstract:
To provide an ion gun of a penning discharge type capable of achieving a milling rate which is remarkably higher than that in the related art, an ion milling device including the same, and an ion milling method.An ion generation unit includes a cathode that emits electrons, an anode that is provided within the ion generation unit and has an inner diameter of 5.2 mm or less, and magnetic-field generation means using a permanent magnet of which a maximum energy product ranges from 110 kJ/m3 to 191 kJ/m3.
Abstract:
A deposition tool includes a vacuum chamber and a physical vapor deposition module including a target source in the vacuum chamber. The target source includes a target material for depositing on a workpiece. An evaporator module is independent of the physical vapor deposition module and is mounted within an enclosure in the vacuum chamber. A gate is configured to selectively open the enclosure to permit evaporation of a coating element to coat the target source in the physical vapor deposition module.
Abstract:
In various embodiments, eroded sputtering targets are partially refurbished by spray-depositing particles of target material to at least partially fill certain regions (e.g., regions of deepest erosion) without spray-deposition within other eroded regions (e.g., regions of less erosion). The partially refurbished sputtering targets may be sputtered after the partial refurbishment without substantive changes in sputtering properties (e.g., sputtering rate) and/or properties of the sputtered films.
Abstract:
Methods and systems for depositing a thin film are disclosed. The methods and systems can be used to deposit a film having a uniform thickness on a substrate surface that has a non-planar three-dimensional geometry, such as a curved surface. The methods involve the use of a deposition source that has a shape in accordance with the non-planar three-dimensional geometry of the substrate surface. In some embodiments, multiple layers of films are deposited onto each other forming multi-layered coatings. In some embodiments, the multi-layered coatings are antireflective (AR) coatings for windows or lenses.
Abstract:
A device for cooling a target, having a component that includes a cooling duct and having an additional thermally conductive plate that is detachably fastened to the cooling side of the component, the cooling side being the side on which the cooling duct exerts its cooling action, characterized in that between the additional thermally conductive plate and the cooling side of the component, a first self-adhesive carbon film is provided, which is extensively and self-adhesively glued to the one side of the additional thermally conductive plate that faces the cooling side.
Abstract:
In various embodiments, eroded sputtering targets are partially refurbished by spray-depositing particles of target material to at least partially fill certain regions (e.g., regions of deepest erosion) without spray-deposition within other eroded regions (e.g., regions of less erosion). The partially refurbished sputtering targets may be sputtered after the partial refurbishment without substantive changes in sputtering properties (e.g., sputtering rate) and/or properties of the sputtered films.