摘要:
A semiconductor device includes a piezoelectric layer interposed between a first metal layer and a hardmask layer. A first trench extends through the hardmask layer, the piezoelectric layer and the first metal layer. A self-limiting second trench extends through the hardmask layer and the piezoelectric layer without reaching the first metal layer.
摘要:
The disclosure relates to method and apparatus for micro-contact printing of micro-electromechanical systems (“MEMS”) in a solvent-free environment. The disclosed embodiments enable forming a composite membrane over a parylene layer and transferring the composite structure to a receiving structure to form one or more microcavities covered by the composite membrane. The parylene film may have a thickness in the range of about 100 nm-2 microns; 100 nm-1 micron, 200-300 nm, 300-500 nm, 500 nm to 1 micron and 1-30 microns. Next, one or more secondary layers are formed over the parylene to create a composite membrane. The composite membrane may have a thickness of about 100 nm to 700 nm to several microns. The composite membrane's deflection in response to external forces can be measured to provide a contact-less detector. Conversely, the composite membrane may be actuated using an external bias to cause deflection commensurate with the applied bias. Applications of the disclosed embodiments include tunable lasers, microphones, microspeakers, remotely-activated contact-less pressure sensors and the like.
摘要:
A capacitance type MEMS sensor has a first electrode portion and a second electrode portion facing each other. The sensor includes a semiconductor substrate having a recess dug in a thickness direction of the semiconductor substrate, the recess having sidewalls, one of which serves as the first electrode portion. The sensor further includes a diaphragm serving as the second electrode portion, the diaphragm arranged within the recess to face the first electrode portion in a posture extending along a depth direction of the recess, the diaphragm having a lower edge spaced apart from the bottom surface of the recess, and is made of the same material as the semiconductor substrate. The sensor further includes an insulating film arranged to join the diaphragm to the semiconductor substrate.
摘要:
An apparatus includes a substrate having at least one via disposed in the substrate, wherein the substrate includes a trench having a substantially trapezoidal cross-section, the trench extending through the substrate between a lower surface of the substrate and an upper surface of the substrate, wherein the top of the trench opens to a top opening, and the bottom of the trench opens to a bottom opening, the top opening being larger than the bottom opening. The apparatus can include a mouth surrounding the top opening and extending between the upper surface and the top opening, wherein a mouth opening in the upper surface is larger than the top opening of the trench, wherein the via includes a dielectric layer disposed on an inside surface of a trench. The apparatus includes and a disposed in the trench, with the dielectric layer sandwiched between the fill and the substrate.
摘要:
Disclosed is an integrated circuit, comprising a semiconductor substrate carrying a plurality of circuit elements; and a pressure sensor including a cavity on said semiconductor substrate, said cavity comprising a pair of electrodes laterally separated from each other; and a flexible membrane over and spatially separated from said electrodes such that said membrane interferes with a fringe field between said electrodes, said membrane comprising at least one aperture. A method of manufacturing such an IC is also disclosed.
摘要:
An integrated transistor in the form of a nanoscale electromechanical switch eliminates CMOS current leakage and increases switching speed. The nanoscale electromechanical switch features a semiconducting cantilever that extends from a portion of the substrate into a cavity. The cantilever flexes in response to a voltage applied to the transistor gate thus forming a conducting channel underneath the gate. When the device is off, the cantilever returns to its resting position. Such motion of the cantilever breaks the circuit, restoring a void underneath the gate that blocks current flow, thus solving the problem of leakage. Fabrication of the nano-electromechanical switch is compatible with existing CMOS transistor fabrication processes. By doping the cantilever and using a back bias and a metallic cantilever tip, sensitivity of the switch can be further improved. A footprint of the nano-electromechanical switch can be as small as 0.1×0.1 μm2.
摘要:
A capacitance type sensor has a substrate, a vibration electrode plate formed over the substrate, a back plate formed over the substrate so as to cover the vibration electrode plate, and a fixed electrode plate provided on the back plate so as to be opposite to the vibration electrode plate. At least one of the vibration electrode plate and the fixed electrode plate is separated into a plurality of regions, each of the plurality of regions being formed with a sensing section including the vibration electrode plate and the fixed electrode plate. A barrier electrode is provided between respective sensing sections of at least one adjacent pair of regions of the plurality of regions to prevent signal interference between the respective sensing sections.
摘要:
An integrated inertial sensor and pressure sensor may include a first substrate including a first surface and a second surface; at least one or more conductive layers, formed on the first surface of the first substrate; a movable sensitive element, formed by using a first region of the first substrate; a second substrate and a third substrate, the second substrate being coupled to a surface of the conductive layer, the third substrate being coupled to the second surface of the first substrate in which the movable sensitive element of the inertial sensor is formed, and the third substrate and the second substrate are respectively arranged on opposite sides of the movable sensitive element; and a sensitive film of the pressure sensor, including at least a second region of the first substrate, or including at least one of the conductive layers on the second region of the first substrate.
摘要:
A semiconductor device includes an insulating layer on a semiconductor substrate, a bit line including TiAl and disposed on the insulating layer, a sidewall layer disposed on opposite sides of the bit line, a word line including TiN and disposed on the sidewall layer intersecting the bit line, and an air gap in an intersection region of the bit line and the word line. The thickness of the sidewall layer is larger than the thickness of the bit line. By having the TiAl bit line and TiN word line, the uniformity of the bit line and word line can be easily controlled to improve the performance of the semiconductor device.
摘要:
An apparatus includes a substrate having at least one via disposed in the substrate, wherein the substrate includes a trench having a substantially trapezoidal cross-section, the trench extending through the substrate between a lower surface of the substrate and an upper surface of the substrate, wherein the top of the trench opens to a top opening, and the bottom of the trench opens to a bottom opening, the top opening being larger than the bottom opening. The apparatus can include a mouth surrounding the top opening and extending between the upper surface and the top opening, wherein a mouth opening in the upper surface is larger than the top opening of the trench, wherein the via includes a dielectric layer disposed on an inside surface of a trench. The apparatus includes and a fill disposed in the trench, with the dielectric layer sandwiched between the fill and the substrate.