Abstract:
A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the 10 wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
Abstract:
An electrostatic chuck 100 useful for holding a substrate 55 in a high density plasma, comprises an electrode 110 at least partially covered by a semiconducting dielectric 115, wherein the semiconducting dielectric 115 may have an electrical resistance of from about 5×109 &OHgr;cm to about 8×1010 &OHgr;cm.
Abstract:
In a plasma reactor including a reactor chamber, a workpiece support for holding a workpiece inside the chamber during processing and an inductive antenna, a window electrode proximal a wall of the chamber, the antenna and wall being positioned adjacently, the window electrode being operable as (a) a capacitive electrode accepting RF power to capacitively coupled plasma source power into the chamber, and (b) a window electrode passing Rf power therethrough from said antenna into the chamber to inductively couple plasma source power into the chamber.
Abstract:
A high pressure, high throughput, single wafer, semiconductor processing reactor is disclosed which is capable of thermal CVD, plasma-enhanced CVD, plasma-assisted etchback, plasma self-cleaning, and deposition topography modification by sputtering, either separately or as part of in-situ multiple step processing. The reactor includes cooperating arrays of interdigitated susceptor and wafer support fingers which collectively remove the wafer from a robot transfer blade and position the wafer with variable, controlled, close parallel spacing between the wafer and the chamber gas inlet manifold, then return the wafer to the blade. A combined RF/gas feed-through device protects against process gas leaks and applies RF energy to the gas inlet manifold without internal breakdown or deposition of the gas. The gas inlet manifold is adapted for providing uniform gas flow over the wafer. Temperature-controlled internal and external manifold surfaces suppress condensation, premature reactions and decomposition and deposition on the external surfaces. The reactor also incorporates a uniform radial pumping gas system which enables uniform reactant gas flow across the wafer and directs purge gas flow downwardly and upwardly toward the periphery of the wafer for sweeping exhaust gases radially away from the wafer to prevent deposition outside the wafer and keep the chamber clean. The reactor provides uniform processing over a wide range of pressures including very high pressures. A low temperature CVD process for forming a highly conformal layer of silicon dioxide is also disclosed. The process uses very high chamber pressure and low temperature, the TEOS and ozone reactants. The low temperature CVD silicon dioxide deposition step is particularly useful for planarizing underlying stepped dielectric layers, either alone or in conjunction with a subsequent isotropic etch. A preferred in-situ multiple-step process for forming a planarized silicon dioxide layer uses (1) high rate silicon dioxide deposition at a low temperature and high pressure followed by (2) the deposition of the conformal silicon dioxide layer also at high pressure and low temperature, followed by (3) a high rate isotropic etch, preferably at low temperature and high pressure in the same reactor used for the two oxide deposition steps. Various combinations of the steps are disclosed for different applications, as is a preferred reactor self-cleaning step.
Abstract:
In an apparatus for producing an electromagnetically coupled planar plasma comprising a chamber having a dielectric shield in a wall thereof and a planar coil outside of said chamber and adjacent to said window coupled to a radio frequency source, the improvement whereby a scavenger for fluorine is mounted in or added to said chamber. When a silicon oxide is etched with a plasma of a fluorohydrocarbon gas, the fluorine scavenger reduces the free fluorine radicals, thereby improving the selectivity and anisotropy of etching and improving the etch rate while reducing particle formation.
Abstract:
A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes, deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
Abstract:
A plasma processing system including a plasma processing chamber; an antenna circuit including a source antenna positioned relative to the processing chamber so as to couple energy into a plasma within the chamber during processing, the antenna circuit having a first terminal and a second terminal with the source antenna electrically coupled between the first and second terminals; and a local impedance transforming network connected to the antenna circuit, the local impedance transforming network including a first capacitor connected between the first terminal and a grounded node, and a second capacitor connected between the second terminal and the grounded node.
Abstract:
An electrostatic chuck for holding a wafer in a plasma processing chamber, the chuck including a pedestal having a top surface, an internal manifold for carrying a cooling gas, and a first plurality of holes leading from the internal manifold toward said top surface; and a dielectric layer on the top surface of the pedestal. The dielectric layer has a top side and second plurality of holes, each of which is aligned with a different one of the holes of the first plurality of holes in the pedestal. The first and second holes form a plurality of passages extending from the internal manifold to the top side of the dielectric layer and through which the cooling gas is supplied to the backside of the wafer. Each of the first holes and the second hole aligned therewith form a different one of the plurality of passages. The passages are concentrated in regions of the dielectric layer that are in proximity to regions of higher leakage of cooling gas when the wafer is held against the electrostatic chuck by an electrostatic force.
Abstract:
A method of etching an oxide over a nitride with high selectivity comprising plasma etching the oxide with a carbon and fluorine-containing etchant gas in the presence of a scavenger for fluorine, thereby forming a carbon-rich polymer which passivates the nitride. This polymer is inert to the plasma etch gases and thus provides high selectivity to the etch process.
Abstract:
A high pressure, high throughout, single wafer semiconductor processing reactor is disclosed which is capable of thermal CVD, plasma-enhanced CVD, plasma-assisted etchback, plasma self-cleaning and deposition topography modification by sputtering, either separately or as part of in-situ multiple step processing. The reactor provides uniform processing over a wide range of pressures including very high pressures. A low temperature process for forming a highly conformal layer of silicon dioxide from a plasma of TEOS, oxygen and ozone is also disclosed. This layer can be planarized using an etchback process. Silicon oxide deposition and etchback can be carried out sequentially in the reactor.