Abstract:
A bendable medical device such as for removing tissue from a subject is provided with a distal housing, an outer support tube, an inner drive tube, a coupler and a commutator portion. The coupler and commutator portion serve to axially constrain a distal end of the inner drive tube during bending, and to supply fluid for lubricating, cooling and irrigating the distal end of the device.
Abstract:
Some embodiments are directed to techniques for building single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while others use an intervening adhesion layer material. Some embodiments use different seed layer and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while others apply the materials in blanket fashion. Some embodiments remove extraneous material via planarization operations while other embodiments remove the extraneous material via etching operations. Other embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material. In some embodiments the dielectric material is a UV-curable photopolymer.
Abstract:
Electrochemical fabrication processes and apparatus for producing single layer or multi-layer structures where each layer includes the deposition of at least two materials and wherein the formation of at least some layers includes operations for reducing stress and/or curvature distortion when the structure is released from a sacrificial material which surrounded it during formation and possibly when released from a substrate on which it was formed. Six primary groups of embodiments are presented which are divide into eleven primary embodiments. Some embodiments attempt to remove stress to minimize distortion while others attempt to balance stress to minimize distortion.
Abstract:
A counterfeiting deterrent device according to one implementation of the disclosure includes a plurality of layers formed by an additive process. Each of the layers may have a thickness of less than 100 microns. At least one of the layers has a series of indentations formed in an outer edge of the layer such that the indentations can be observed to verify that the device originated from a predetermined source. According to another implementation, a counterfeiting deterrent device includes at least one raised layer having outer edges in the shape of a logo. A light source is configured and arranged to shine a light through a slit in a substrate layer of the device and past an intermediate layer to light up the outer edge of the raised layer. The layers of the device are formed by an additive process and have a thickness of less than 100 microns each.
Abstract:
Embodiments of invention involve tissue approximation instruments that may be delivered to the body of a patient during minimally invasive or other surgical procedures. In one group of embodiments, the instrument has an elongated configuration with two sets of expandable wings that each have spreadable wings that can be made to expand when located on opposite sides of a distal tissue region and a proximal tissue region and can then be made to move toward one another to bring the two tissue regions into a more proximate position. The instrument is delivered through a needle or catheter and is controlled by relative movement of a push tube and control wire wherein the control wire can be released from the instrument via rotation in a first direction and can cause release of the approximation device from tissue that it is holding by rotation in the opposite direction.
Abstract:
Embodiments of the present invention provide mesoscale or microscale three-dimensional structures (e.g. components, device, and the like). Embodiments relate to one or more of (1) the formation of such structures which incorporate dielectric material and/or wherein seed layer material used to allow deposition over dielectric material is removed via planarization operations; (2) the formation of such structures wherein masks used for at least some selective patterning operations are obtained through transfer plating of masking material to a surface of a substrate or previously formed layer, and/or (3) the formation of such structures wherein masks used for forming at least portions of some layers are patterned on the build surface directly from data representing the mask configuration, e.g. in some embodiments mask patterning is achieved by selectively dispensing material via a computer controlled inkjet nozzle or array or via a computer controlled extrusion device.
Abstract:
Forming multi-layer 3D structures involving the joining of at least two structural elements, at least one of which is formed as a multi-layer 3D structure, wherein the joining occurs via one of: (1) elastic deformation and elastic recovery, (2) relative deformation of an initial portion of at least one element relative to another portion of the at least one element until the at least two elements are in a desired retention position after which the deformation is reduced or eliminated, or (3) moving a retention region of one element into the retention region of the other element, without deformation of either element, along a path including a loading region of the other element and wherein during normal use the first and second elements are configured relative to one another so that the loading region of the second element is not accessible to the retention region of the first element.
Abstract:
Embodiments of the present invention are directed to silicone based compositions having enhanced UV absorption, methods for making such compositions, methods of making electrochemical fabrication contact masks using such compositions, contact masks themselves, and electrochemical fabrication methods for using such masks. The enhanced UV absorption of the silicone allows it to be patterned by laser ablation. Some compositions include moieties having one or more aromatic rings attached to silicone backbones and molecules having ring structured polyimides with pluralities of double bond functional groups. Other compositions also include molecules having aromatic ring backbones and pluralities of double bond formation groups.
Abstract:
Permanent or temporary alignment and/or retention structures for receiving multiple components are provided. The structures are preferably formed monolithically via a plurality of deposition operations (e.g. electrodeposition operations). The structures typically include two or more positioning fixtures that control or aid in the positioning of components relative to one another, such features may include (1) positioning guides or stops that fix or at least partially limit the positioning of components in one or more orientations or directions, (2) retention elements that hold positioned components in desired orientations or locations, and/or (3) positioning and/or retention elements that receive and hold adjustment modules into which components can be fixed and which in turn can be used for fine adjustments of position and/or orientation of the components.
Abstract:
Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner planar spring elements along their length. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.