Abstract:
A microelectromechanical (MEMS) resonator with a vacuum-cavity is fabricated using polysilicon-enabled release methods. A vacuum-cavity surrounding the MEMS beam is formed by removing release material that surrounds the beam and sealing the resulting cavity under vacuum by depositing a layer of nitride over the structure. The vacuum-cavity MEMS resonators have cantilever beams, bridge beams or breathing-bar beams.
Abstract:
The present invention relates to a chip package that includes a semiconductor device and at least one micro electromechanical structure (MEMS) such that the semiconductor device and the MEMS form an integrated package. One embodiment of the present invention includes a semiconductor device, a first MEMS device disposed in a conveyance such as a film, and a second MEMS device disposed upon the semiconductor device through a via in the conveyance. The present invention also relates to a process of forming a chip package that includes providing a conveyance such as a tape automated bonding (TAB) structure that may bold at least one MEMS device. The method is further carried out by disposing the conveyance over the active surface of the device in a manner that causes the at least one MEMS to communicate electrically to the active surface. Where appropriate, a sealing structure such as a solder ring may be used to protect the MEMS.
Abstract:
A method for forming a microelectromechanical (MEMS) resonator is disclosed. The method comprises first manufacturing a plurality of resonator structures. Each of the resonator structures differ from the others in a systematic manner, such as the length of the resonator structure. The resonance frequency of each of the resonator structures is determined. Then, a desired resonator structure is selected based upon the resonance frequency of the desired resonator structure.
Abstract:
A method of fabricating a feature on a substrate is disclosed. In a described embodiment the feature is the gate electrode of an MOS transistor. In this embodiment a polysilicon layer is formed on the substrate. Next, an edge definition layer of silicon nitride is formed on the feature layer. Then, a patterned edge definition layer of silicon dioxide is formed on the first edge definition layer. Then, a silicon nitride spacer is formed adjacent to an edge of the patterned second edge definition layer. Finally, the polysilicon layer is etched, forming the transistor gate electrode from the polysilicon that remains under the spacer.
Abstract:
A method including to a resonator coupled to at least one support structure on a substrate, the resonator having a resonating frequency in response to a frequency stimulus, modifying the resonating frequency by modifying the at least one support structure. A method including forming a resonator coupled to at least one support structure on a chip-level substrate, the resonator having a resonating frequency; and modifying the resonating frequency of the resonator by modifying the at least one support structure. A method including applying a frequency stimulus to a resonator coupled to at least one support structure on a chip-level substrate determining a resonating frequency; and modifying the resonating frequency of the resonator by modifying the at least one support structure. An apparatus including a resonator coupled to at least one support structure on a chip-level substrate, the resonator having a resonating frequency tuned by the modification of the at least one support structure to a selected frequency stimulus.
Abstract:
A method of forming a dielectric layer suitable for use as the gate dielectric layer of a metal-oxide-semiconductor field effect transistor (MOSFET) includes oxidizing the surface of a silicon substrate, forming a metal layer over the oxidized surface, and reacting the metal with the oxidized surface to form a substantially intrinsic layer of silicon superjacent the substrate, wherein at least a portion of the silicon layer may be an epitaxial silicon layer, and a metal oxide layer superjacent the silicon layer. In a further aspect of the present invention, an integrated circuit includes a plurality of MOSFETs, wherein various ones of the plurality of transistors have metal oxide gate dielectric layers and substantially intrinsic silicon layers subjacent the metal oxide dielectric layers.
Abstract:
A semiconductor light emitting device, such as the light emitting diode (LED) or the laser diode (LD), having a structure in which a light emitting area is a double heterostructure or a multi-layer quantum well structure. The light emitting area is formed on a substrate. Subsequently, an electrically conductive oxide layer as a transparent window layer to eliminate the crowding effect is formed on the light emitting area. The substrate layer consists of a GaAs substrate and a GaAsP layer to increasing the band gap energy of the substrate. The electrically conductive oxide layer is formed of AlZnO(x) material, having a lower electrical resistivity and a high transparency in the visible wavelength region. The window layer is formed using a physical vapor deposition or a metalorganic chemical vapor deposition.
Abstract:
A method of forming an asymmetric transistor and an asymmetric transistor. The method includes patterning a first spacer material and a second spacer material over a gate electrode material on a substrate with one side of the second spacer material adjacent to a first spacer material. The gate electrode material is patterned according to the first spacer material and the second material. Junction regions are formed in the substrate adjacent to the gate electrode material. One of the first spacer material and the second spacer material is then removed and the gate electrode material is patterned into a gate electrode according to the other of the first spacer and the second spacer material. Finally, second junction regions are formed in the substrate adjacent to gate electrode.
Abstract:
A method was achieved for forming a multilayer passivation layer comprised of a silicon oxide/silicon nitride/silicon oxide/silicon nitride by depositing the layers consecutively in a single PECVD system. The method consists of depositing a first SiO.sub.2 layer that serves as a stress-release layer, a thin Si.sub.3 N.sub.4 layer that serves as a buffer layer that minimizes cracking and as a passivation layer that prevents mobile alkaline ion penetration, a thin second SiO.sub.2 layer to fill and seal any remaining cracks and pinholes in the first Si.sub.3 N.sub.4 layer, and a main Si.sub.3 N.sub.4 passivation layer that prevents water and/or other corrosive chemicals from attacking the metal. Since this multilayer passivation layer can be deposited essentially pinhole-free to a thickness that is less than the prior art's passivation layer of 8000 Angstroms needed to prevent pinholes, it can be used on 0.38 to 0.25 um DRAM technology, which eliminates voids that could otherwise trap photoresist which can later cause corrosion of the metal lines.
Abstract translation:通过在单个PECVD系统中连续沉积层来形成由氧化硅/氮化硅/氧化硅/氮化硅组成的多层钝化层的方法。 该方法包括沉积用作应力释放层的第一SiO 2层,用作最小化裂纹的缓冲层的薄Si 3 N 4层,以及防止移动碱性离子渗透的钝化层,稀的第二SiO 2层填充 并且密封第一Si 3 N 4层中的任何剩余的裂纹和针孔,以及防止水和/或其它腐蚀性化学物质侵蚀金属的主要Si 3 N 4钝化层。 由于这种多层钝化层可以基本上无针孔地沉积到比现有技术的防止针孔所需的8000埃的钝化层的厚度,所以它可以用于0.38到0.25微米的DRAM技术,这消除了否则的空隙 陷阱光致抗蚀剂可以后来导致金属线的腐蚀。
Abstract:
A structure of a semiconductor light emitting device includes a GaAs substrate, a GaAsP interface substrate, a first cladding layer, an active layer, and a second cladding layer. The GaAsP interface substrate layer is formed on the GaAs substrate, in addition, the GaAsP interface substrate layer formed on the substrate is of a thickness such that the upper surface of the GaAsP interface substrate layer adjacent to the substrate is composed of single crystal. The first cladding layer of a first conductivity is formed on the GaAsP interface substrate layer. The active layer is formed on the first cladding layer, from which the light is generated in the active layer. The second cladding layer of a second conductivity is formed on the active layer.