Abstract:
Mitigating effects of delamination of components in the data processing system is provided. A signal is received from one or more sensors in the data processing system. A determination is made as to whether the signal indicates that one threshold in a plurality of thresholds has been reached or exceeded. Responsive to the signal indicating that one threshold in the plurality of thresholds has been reached or exceeded, a determination is made as to whether the one threshold is a low temperature threshold or a high temperature threshold. Responsive to the one threshold being a low temperature threshold, one of a plurality of actions is initiated to increase a temperature of the data processing system thereby mitigating effects of delamination of the components in the data processing system.
Abstract:
A first selection of mesh line segments of a mesh layer are of a first width and a second selection of mesh line segments of the mesh layer are of a second width, wherein the second width is greater than the first width. The second selection of mesh line segments of the second width are positioned in parallel to a selection of signal lines in a signal layer that are likely to introduce crosstalk, wherein the widening of the mesh line segments shadowing the selection of signal lines increases the likelihood that the return current associated with the signal will flow in the wider mesh line segment, thereby increasing the likelihood of containing the electromagnetic fields associated with the signal such that crosstalk to other signals is reduced or contained.
Abstract:
Some embodiments of the inventive subject matter are directed to a first circuit board configured to include an electronic component. The electronic component includes a plurality of leads. The first circuit board includes first wires configured to connect to a first portion of the plurality of leads. The second circuit board is affixed to the first circuit board. The second circuit board includes second wires. The second circuit board is smaller in size than the first circuit board. A plurality of electrical connectors extend through a thickness of the first circuit board and are configured to connect a second portion of the plurality of leads to the second wires.
Abstract:
An auto routing method and system provides optimized circuit routing while maintaining proper reference return paths for critical signals. Critical signal paths are auto-routed simultaneously with corresponding reference return paths, and the reference return paths can be merged into reference planes if they are adjacent to regions connected to the same reference net. The reference return paths may be in a plane adjacent to the signal path plane in the same channel, or the reference returns may be routed in adjacent channels in the same plane as the signal path. A check may be performed on endpoints of each critical signal path to determine whether a reference return via is present within a proximity tolerance of the signal path endpoints, and a reference return via placed if not.
Abstract:
Manufacturing circuits with reference plane voids over vias with a strip segment interconnect permits routing critical signal paths over vias, while increasing via insertion capacitance only slightly. The transmission line reference plane defines voids above (or below) signal-bearing plated-through holes (PTHs) that pass through a rigid substrate core, so that the signals are not degraded by an impedance mismatch that would otherwise be caused by shunt capacitance from the top (or bottom) of the signal-bearing PTHs to the transmission line reference plane. In order to provide increased routing density, signal paths are routed over the voids, but disruption of the signal paths by the voids is prevented by including a conductive strip through the voids that reduces the coupling to the signal-bearing PTHs and maintains the impedance of the signal path conductor.
Abstract:
A method and system for applying multiple voltage droop detection and instruction throttling instances with customized thresholds across semiconductor chips. Environmental parameters are detected for various locations on a chip, and timing margins are determined for each location on the chip. An acceptable voltage droop for each location is determined based on the environmental parameters and the timing margins for the corresponding location. A droop threshold is then determined for each location based on the corresponding acceptable voltage droop determined for the corresponding location.
Abstract:
Mitigating effects of delamination of components in the data processing system is provided. A signal is received from one or more sensors in the data processing system. A determination is made as to whether the signal indicates that one threshold in a plurality of thresholds has been reached or exceeded. Responsive to the signal indicating that one threshold in the plurality of thresholds has been reached or exceeded, a determination is made as to whether the one threshold is a low temperature threshold or a high temperature threshold. Responsive to the one threshold being a low temperature threshold, one of a plurality of actions is initiated to increase a temperature of the data processing system thereby mitigating effects of delamination of the components in the data processing system.
Abstract:
Monitoring temperature excursions an assembly experiences over a life of the assembly is provided. A determination is made as to whether the assembly has been in service beyond a predetermined end of life objective. Responsive to the assembly failing to be in service beyond the predetermined end of life objective, a new temperature value associated with the assembly is read. A modifier value for a figure of merit (FOM) value is computed and added to a cumulative figure of merit value. The cumulative figure of merit value is compared to a cumulative stress figure of merit budget. Responsive to the cumulative figure of merit value exceeding the cumulative stress figure of merit budget, an identified stress management solution is implemented.
Abstract:
A low inductance via arrangement for multilayer ceramic (MLC) substrates is provided. With the MLC substrate and via arrangement of the illustrative embodiments, the via-field inductance for a given contact pad array is reduced. This reduction is achieved by the introduction of T-jogs and additional vias. These T-jogs and additional vias form additional current paths that cause additional parallel inductances that reduce the via-field inductance. In one illustrative embodiment, the additional T-jogs and vias are added to a center portion of a contact pad array. The T-jogs are comprised of two jogs in a wiring layer of the MLC, each jog being toward a via associated with an adjacent contact pad in the contact pad array. These additional T-jogs and vias form additional current loops parallel to the existing ones which thus, reduce the total inductance of the via-field.
Abstract:
A design method and system for minimizing blind via current loops provides for improvement of electrical interconnect structure design without requiring extensive electromagnetic analysis. Other vias in the vicinity of a blind via carrying a critical signal are checked for suitability to conduct return current corresponding to the critical signal that is disrupted by the transition from a layer between two metal planes to another layer. The distance to the return current via(s) is checked and the design is adjusted to reduce the distance if the distance is greater than a specified threshold. If the blind via transition is to an external layer, suitable vias connect the reference plane at the internal end of the blind via to an external terminal. If the transition is between internal layers, suitable vias are vias that connect the two reference planes surrounding the reference plane traversed by the blind via.