Abstract:
A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting into the formation via the injection well asphaltenes as sacrificial agents to inhibit the deposition of chemical recovery agents such as surfactant on the reservoir matrix. Normally the process would be carried out by first injecting the asphaltenes into the formation through the injection well and following them with a chemical recovery agent. The chemical recovery agent would then be followed by a drive fluid such as water to push the materials to the production well.
Abstract:
A wireless communication system includes a processor that receives a downlink control information (DCI) associated with a transmission channel used for transmitting a RF signal and a control channel element index associated with the DCI. The processor determines a scrambling code based on the control channel element index for the DCI, scrambles the DCI using the scrambling code, generates a scrambled DCI, and modulates the scrambled. DCI to generate a modulated symbol. The processor uses look-up tables to determine a resource element group (REG) based on the control channel element index, map the modulated symbol to the REG, and generate a transmission frame.
Abstract:
Apparatus for and a method of decompression of block coded video data in a multi-core processor. The processor cores decode respective coded groups of blocks of video data independently, in parallel and deblock respective decoded groups of blocks of video data independently and in parallel with the decode operations and with other deblock operations.
Abstract:
A method of forming a hybrid inorganic/organic dielectric layer on a substrate for use in an integrated circuit is provided, wherein the method includes forming a first dielectric layer on the substrate via chemical vapor deposition, and forming a second dielectric layer on the first dielectric layer via chemical vapor deposition, wherein one of the first dielectric layer and the second dielectric layer is formed from an organic dielectric material, and wherein the other of the first dielectric layer and the second dielectric layer is formed from an inorganic dielectric material.
Abstract:
An organic opto-electronic device is disclosed. One embodiment comprises a substrate, one or more organic device layers disposed over the substrate, and a multi-layer barrier disposed over the one or more organic device layers, the multi-layer barrier comprising a parylene-based layer and a layer comprising an ultraviolet protectant material.
Abstract:
A method of stabilizing a poly(paraxylylene) dielectric thin film after forming the dielectric thin film via transport polymerization is disclosed, wherein the method includes annealing the dielectric thin film under at least one of a reductive atmosphere and a vacuum at a temperature above a reversible solid phase transition temperature of the dielectric film to convert the film from a lower temperature phase to a higher temperature phase, and cooling the dielectric thin film at a sufficient rate to a temperature below the solid phase transition temperature of the dielectric thin film to trap substantial portions of the film in the higher temperature phase.
Abstract:
A method of encapsulating an organic light-emitting device is disclosed, wherein the device includes a light-emitting portion and an electrical contact portion, the method including forming a polymer layer over the light-emitting portion and the electrical contact portion of the device; forming a separation in the polymer layer between a portion of the polymer layer disposed over the light-emitting portion of the device and a portion of the polymer layer disposed over the electrical contact portion of the device; adhering a film removal structure to the portion of the polymer layer disposed over the electrical contact portion of the device; and removing the film removal structure, thereby causing the removal of the portion of the polymer layer disposed over the electrical contact portion of the device.
Abstract:
The present invention pertains to a processing method to produce a porous polymer film that consists of sp2C—X and HC-sp3Cα—X bonds (wherein, X═H or F), and exhibits at least a crystal melting temperature, (“Tm”). The porous polymer films produced by this invention are useful for fabricating future integrated circuits (“IC's”). The method described herein is useful for preparing the porous polymer films by polymerizing reactive intermediates, formed from a first-precursor, with a low feed rate and at temperatures equal to or below a melting temperature of intermediate (T1m). Second-precursors that do not become reactive intermediates or have an incomplete conversion to reactive intermediates are also transported to a deposition chamber and become an inclusion of the deposited film. By utilizing a subsequent in-situ, post treatment process the inclusions in the deposited film can be removed to leave micro-pores in the resultant film. Annealing methods are used herein to stabilize the polymer films after reactive plasma etching. Furthermore, the present invention pertains to employment of reductive plasma conditions for patterning polymer films that consist of sp2C—X and HC-sp3Cα—X bonds (wherein, X═H, F).
Abstract:
A method of forming a composite dielectric polymer thin film on a substrate is disclosed, wherein the method includes forming a first substantially continuous layer of a dielectric polymer material on the substrate, forming a porous layer of the dielectric polymer material on the first, substantially continuous layer, and forming a second substantially continuous layer of the dielectric polymer material on the porous layer.
Abstract:
An integrated circuit including a composite polymer dielectric layer formed on a substrate is disclosed, wherein the composite polymer dielectric layer includes a first silane-containing layer formed on the substrate, wherein the first silane-containing layer is formed at least partially from an organosilane material, a polymer dielectric layer formed on the first silane-containing layer, and a second silane-containing layer formed on the polymer dielectric layer. In some embodiments, the first silane-containing layer and second silane-containing layer may be formed from organosilane materials having at least one unsaturated bond capable of free radical polymerization. Systems and methods for making the disclosed integrated circuits are also provided.