Abstract:
Semiconductor devices and methods of making semiconductor devices with a barrier layer comprising manganese nitride are described. Also described are semiconductor devices and methods of making same with a barrier layer comprising Mn(N) and, optionally, an adhesion layer.
Abstract:
Methods and apparatus to fill a feature with a seamless gapfill of copper are described. A copper gapfill seed layer is deposited on a substrate surface by atomic layer deposition followed by a copper deposition by physical vapor deposition to fill the gap with copper.
Abstract:
Provided are acetylide-based compounds and methods of making the same. Also provided are methods of using said compounds in film deposition processes to deposit films comprising silicon. Certain methods comprise exposing a substrate surface to a acetylide-based precursor and a reactant in various combinations.
Abstract:
Methods of selectively depositing a metal selectively onto a metal surface relative to a dielectric surface. Methods include reducing a metal oxide surface to a metal surface and protecting a dielectric surface to minimize deposition thereon.
Abstract:
Methods of removing molybdenum oxide from a surface of a substrate comprise exposing the substrate having a molybdenum oxide layer on the substrate to a halide etchant having the formula RmSiX4-m, wherein m is an integer from 1 to 3, X is selected from iodine (I) and bromine (Br) and R is selected from the group consisting of a methyl group, ethyl group, propyl group, butyl group, cyclohexyl group and cyclopentyl group. The methods may be performed in a back-end-of-the line (BEOL) process, and the substrate contains a low-k dielectric material.
Abstract:
Organometallic precursors and methods of depositing high purity metal films are discussed. Some embodiments utilize a method comprising exposing a substrate surface to an organometallic precursor comprising one or more of molybdenum (Mo), tungsten (W), osmium (Os), technetium (Tc), manganese (Mn), rhenium (Re) or ruthenium (Ru), and an iodine-containing reactant comprising a species having a formula RIx, where R is one or more of a C1-C10 alkyl, C3-C10 cycloalkyl, C2-C10 alkenyl, or C2-C10 alkynyl group, I is an iodine group and x is in a range of 1 to 4 to form a carbon-less iodine-containing metal film. Some embodiments advantageously provide methods of forming metal films having low carbon content (e.g., having greater than or equal to 95% metal species on an atomic basis), without using an oxidizing agent or a reductant.
Abstract:
Methods of selectively depositing blocking layers on conductive surfaces over dielectric surfaces are described. In some embodiments, a 4-8 membered substituted heterocycle is exposed to a substrate to selectively form a blocking layer. In some embodiments, a layer is selectively deposited on the dielectric surface after the blocking layer is formed. In some embodiments, the blocking layer is removed.
Abstract:
Embodiments of the disclosure relate to methods using an oligomer film to protect a substrate surface. The oligomer film is formed on the substrate surface with a first feature and a second feature each having a feature depth. The first feature has a first critical dimension (CD) and the second feature has a second CD. The semiconductor substrate surface is exposed to one or more monomers to form the oligomer film, and the oligomer film forms selectively on the bottom and fills a portion of the feature depth. The oligomer film fills the feature depth to substantially the same or the same height in each of the first feature and the second feature. Methods of forming semiconductor devices using the oligomer film are also disclosed.
Abstract:
Embodiments of the disclosure relate to methods of etching a copper material. In some embodiments, the copper material is exposed to a halide reactant to form a copper halide species. The substrate is then heated to remove the copper halide species. In some embodiments, the etching methods are performed at relatively low temperatures. Additional embodiments of the disclosure relate to methods of copper gapfill. In some embodiments, a copper material within a substrate feature is exposed to a halide reactant to form a copper halide species. The copper halide species is then heated and flowed to fill at least a portion of the substrate feature. The reflow methods are performed at lower temperatures than similar reflow methods without formation of the copper halide species.
Abstract:
Processing methods for forming iridium-containing films at low temperatures are described. The methods comprise exposing a substrate to iridium hexafluoride and a reactant to form iridium metal or iridium silicide films. Methods for enhancing selectivity and tuning the silicon content of some films are also described.