Abstract:
Systems and methods for improving operation of a hybrid vehicle are presented. In one example, torque demand of a driveline after a shift is forecast to determine if it is desirable to start the engine early so that engine torque is available after the shift. The approach may improve vehicle torque response.
Abstract:
A vehicle and a method of controlling a vehicle are provided. The vehicle may include a controller programmed to, in response to a change from a first to a second powertrain operating mode, operate an engine and electric machine to increase a state of charge target of a traction battery to increase propulsion torque available from the electric machine. The controller may be further programmed to, in response to a decrease in accelerator pedal position and a vehicle speed being less than a threshold speed while operating the powertrain in the second powertrain operating mode and the engine and electric machine are coupled via a friction element, decrease a pressure of the friction element to a first target pressure to decouple the engine from the electric machine.
Abstract:
Systems and methods for operating a hybrid vehicle driveline that includes an engine and a motor are presented. In one example, the systems and methods include one or more speed control modes where torque output of a motor is adjusted responsive to different control parameters in the different control modes.
Abstract:
An exemplary method directing power within an electrified vehicle includes generating electric power with an electric machine of an electrified vehicle. The method directs a first percentage of the electric power to a first use and a second percentage of the electric power to a second use. The method adjusts the first percentage and the second percentage in response to demand for an internal combustion engine of the electrified vehicle.
Abstract:
Systems and methods for improving operation of a hybrid vehicle are presented. In one example, a method for transitioning between regenerative braking and providing positive torque to a driveline is presented. In particular, an electric machine of the hybrid vehicle may be operated in a speed control mode to reduce the possibility of gear lash.
Abstract:
Methods and systems are provided for expediting purging of LP-EGR from an air intake system during conditions of decreasing engine load. During a tip-out, an EGR valve is closed while the engine is shifted to a VDE mode of operation to improve engine tolerance to EGR at lower engine loads and until the EGR is sufficiently purged. A non-VDE mode is resumed if higher engine loads are restored, else, a deceleration fuel shut-off mode is selected if the tip-out continues to zero load.
Abstract:
Systems and methods for improving operation of a hybrid vehicle are presented. In one example, driveline operating modes may be adjusted in response to driving surface conditions. The approaches may improve vehicle drivability and reduce driveline degradation.
Abstract:
A method and a system for improving operation of a hybrid vehicle are presented. In one example, operation of a hybrid driveline is adjusted in response to driving conditions that may cause wheel slip or a stuck vehicle. The approach may reduce driveline wear and improve vehicle drivability.
Abstract:
Systems and methods for improving operation of a hybrid vehicle are presented. In one example, torque demand of a driveline after a shift is forecast to determine if it is desirable to start the engine early so that engine torque is available after the shift. The approach may improve vehicle torque response.
Abstract:
Systems and methods for improving operation of a hybrid vehicle are presented. In one example, a method for transitioning between regenerative braking and engine braking is described.