摘要:
An apparatus and method for manufacturing a semiconductor package are disclosed. The apparatus may include at least a semiconductor chip having input/output (I/O) pads arranged on a surface thereof, a first dielectric layer formed on the surface of the semiconductor chip which may expose the I/O pads, a seed metal layer selectively formed on the first dielectric layer and the I/O pads, re-routing lines formed on the seed metal layer and electrically coupled to the I/O pads, a protective coating layer on side surfaces and an upper surface of each re-routing line, a second dielectric layer formed on the first dielectric layer which may cover the re-routing lines surrounded with the protective coating layer, and solder balls formed on the respective pads and electrically coupled to the re-routing lines.
摘要:
A solder bump structure may be formed using a dual exposure technique of a photoresist, which may be a positive photoresist. The positive photoresist may be coated on an IC chip. First openings may be formed at first exposed regions of the photoresist by a first exposure process. Metal projections may be formed in the first openings. A second opening may be formed at a second exposed region of the photoresist by a second exposure process. The second exposed region may include non-exposed regions defined by the first exposure process. A solder material may fill the second opening and may be reflowed to form a solder bump. The metal projections may be embedded within the solder bump.
摘要:
A chip stack package is manufactured at a wafer level by forming connection vias in the scribe lanes adjacent the chips and connecting the device chip pads to the connection vias using rerouting lines. A lower chip is then attached and connected to a substrate, which may be a test wafer, and an upper chip is attached and connected to the lower chip, the electrical connections being achieved through their respective connection vias. In addition to the connection vias, the chip stack package may include connection bumps formed between vertically adjacent chips and/or the lower chip and the substrate. The preferred substrate is a test wafer that allows the attached chips to be tested, and replaced if faulty, thereby ensuring that each layer of stacked chips includes only “known-good die” before the next layer of chips is attached thereby increasing the production rate and improving the yield.
摘要:
A thermal-stress-absorbing interface structure is provided between a semiconductor integrated circuit chip and a surface-mount structure. The interface structure comprises an elongated conductive-bump pad having a first length-wise end and a second length-wise end, and a side. The pad has an interconnection line extending from the side thereof intermediate the first and the second ends. The interconnection line is electrically connected to the chip. The interface structure further includes a first polymer layer having an exposed surface, and a second polymer layer, each having a different modulus of elasticity, disposed below the pad. The second polymer layer extends over substantially the entire exposed surface of the first polymer layer to absorb a thermal stress during thermal cycling.
摘要:
A thermal-stress-absorbing interface structure between a semiconductor integrated circuit chip and a surface-mount structure and a method for manufacturing the same. The thermal-stress-absorbing interface structure comprises an elongated conductive-bump pad having a first length-wise end and a second length-wise end, and a side. The thermal-stress-absorbing interface structure includes means for allowing the first end of the pad to move up when the second end of the pad moves down and alternately allowing the first end to move down when the second end moves up, upon thermal cycling. The means has a center axis and the up-and-down movements of the pad are balanced on the center axis. In accordance with this novel structure of the present invention, interconnection reliability such as solder joint reliability can be significantly improved.