Abstract:
A low-cost alignment system suitable for aligning a wafer to a test fixture includes a bundle of optical fibers wherein at least one fiber serves to deliver illumination to the alignment target from an end thereof, and a plurality of receiver fibers, each having ends with a known spatial relationship to the end of the illuminator fiber. The ends of the fiber bundle have a known spatial relationship to the fixture. In some embodiments, the fiber bundle is disposed within the fixture such that there is an unobscured optical path between the wafer and the receiving and illuminating ends of the fibers. In some embodiments, the fiber bundle is coupled to a light source and a light sensor mounted on the fixture. In some embodiments the alignment target is one or more bonding pads disposed on a wafer.
Abstract:
Access to integrated circuits of a wafer for concurrently performing two or more types of testing, is provided by bringing a wafer and an edge-extended wafer translator into an attached state. The edge-extended wafer translator having wafer-side contact terminals and inquiry-side contact terminals disposed thereon, a first set of wafer-side contact terminals being electrically coupled to a first set of inquiry-side contact terminals, and a second set of wafer-side contact terminals being electrically coupled to a second set of inquiry-side contact terminals. The edge-extended wafer translator having a central portion generally coextensive with the attached wafer, and an edge-extended portion extending beyond the boundary generally defined by the outer circumferential edge of the wafer. A first set of pads of at least one integrated circuit is electrically coupled to the first set of wafer-side contact terminals, and a second set of pads of the integrated circuit is electrically coupled to the second set of wafer-side contact terminals. The edge-extended wafer translator may be shaped such that its edge-extended portion is not coplanar with the central portion thereof.
Abstract:
Application of a conductive material with a compliant underlayer onto selected pads of a substrate, includes forming at least one padstack, by patterning a sheet including a stack of material layers. Padstacks may include a first conductive top layer, one or more underlying layers, and a bottom attachment layer, such as a solder layer. At least one flexible, or compliant, layer is disposed in the sheet between the top and attachment layers. The compliant layer may be a conductive elastomer. The top layer of the padstacks are adhered to a soluble tape, and this composite structure is moved into place over the circuit board by means of a pick and place operation. The placement of the padstacks is followed by a solder reflow to adhere the padstacks to the contact pads of the substrate, and by a wash cycle with a solvent to remove the soluble tape.
Abstract:
A metallization pattern for a wafer translator provides a high density layout of interdigitated contact pads, suitable for component placement, along with larger contact pads suitable for connection to external equipment terminals. In another aspect, electrically conductive material may be added to, or removed from, the high density layout of interdigitated contact pads and larger contact pads to modify, or reconfigure, the electrical pathways of the wafer translator.
Abstract:
A replacement for probe cards includes a full wafer contacter. A first surface of the full wafer contacter is brought into contact with, and the contacter is attached to, a wafer, thereby making electrical connection with at least a portion of the contact pads on each of a plurality of integrated circuits on the wafer. The full wafer contacter provides conductive pathways from the IC contact pads to a second surface of the full wafer contacter where a corresponding set of contact pads provide access to test systems and/or other devices. The contact pads on the second surface of the full wafer contacter are typically larger than the contact pads of the integrated circuits, and are typically spaced father apart from each other. The full wafer contacter is constructed to be suitable to provide access to the contact pads of the unsingulated integrated circuits during a wafer burn-in process.
Abstract:
A multiple circuit board package employing solder balls and method and apparatus for fabricating same is described. Two or more printed circuit boards and a plurality of electronic devices are joined together using solder balls. Alternatively, three or more printed circuit boards are joined together using the solder balls. A novel and improved solder ball connection is disclosed, along with a fixture for aligning and fixing the disposition of the pads and the solder balls during a heating cycle in which the circuit boards are placed under pressure while the solder balls are re-flowed for making an electrical connection.
Abstract:
A wafer translator and a wafer, removably attached to each other, provides the electrical connection to electrical contacts on integrated circuits on a wafer in such a manner that the electrical contacts are substantially undamaged in the process of making such electrical connections. Various embodiments of the present invention provide a gasketless sealing means for facilitating the formation by vacuum attachment of the wafer/wafer translator pair. In this way, no gasket is required to be disposed between the wafer and the wafer translator. Air, or gas, is evacuated from between the wafer and wafer translator through one or more evacuation pathways in the gasketless sealing means.
Abstract:
An apparatus, suitable for coupling a pads of integrated circuits on wafer to the pogo pins of a pogo tower in a test system without the need of a probe card, includes a body having a first surface and a second surface, the body having a substantially circular central portion, and a plurality of bendable arms extending outwardly from the central portion, each bendable arm having a connector tab disposed at the distal end thereof; a first plurality of contact terminals disposed on the second surface of the central portion of the body, the first plurality of contact terminals arranged in pattern to match the layout of pads on a wafer to be contacted; at least one contact terminal disposed on the first surface of the plurality of connector tabs; and a plurality of electrically conductive pathways disposed in the body such that each of the first plurality of contact terminals is electrically connected to a corresponding one of the contact terminals on the first surface of the connector tabs.
Abstract:
A wafer translator is provided with a patterned layer of wafer bonding thermoset plastic and is removably attached with a wafer so as to form a wafer/wafer translator pair. The wafer translator acts as a mechanical support during a thinning process as well as during a wafer dicing operation. The singulated integrated circuits are then removed from the wafer translator. In some embodiments, wafer level testing of the integrated circuits on the wafer is performed subsequent to the wafer thinning process but before the wafer and wafer translator are separated. In other embodiments, wafer level testing of the integrated circuits on the wafer is performed subsequent to the wafer dicing operation but before the diced wafer and wafer translator are separated.
Abstract:
Methods and apparatus for testing unsingulated integrated circuits on a wafer include adapting a wafer prober for use with full-wafer-contacter disposed on the wafer. Some embodiments include placing wafer on a chuck of the prober, aligning the wafer to a full-wafer contacter incorporated in the wafer prober, removably attaching the wafer to the full wafer contacter, separating the wafer from the chuck, and making electrical contact to one or more integrated circuits of the wafer by making physical contact with a surface of the full-wafer contacter that faces away from the wafer.