Abstract:
Provided is a semiconductor device having favorable reliability. A manufacturing method of a semiconductor device comprising the steps of: forming a first oxide semiconductor having an island shape; forming a first conductor and a second conductor over the first oxide semiconductor; forming an oxide semiconductor film over the first oxide semiconductor, the first conductor, and the second conductor; forming a first insulating film over the oxide semiconductor film; forming a conductive film over the first insulating film; removing part of the first insulating film and part of the conductive film to form a first insulator and a third conductor; forming a second insulating film covering the first insulator and the third conductor; removing part of the oxide semiconductor film and part of the second insulating film to form a second oxide semiconductor and a second insulator and to expose a side surface of the first oxide semiconductor; forming a third insulator in contact with the side surface of the first oxide semiconductor and with a side surface of the second oxide semiconductor; forming a fourth insulator in contact with the third insulator; and performing a microwave-excited plasma treatment to the third insulator and the fourth insulator.
Abstract:
Defects in an oxide semiconductor film are reduced in a semiconductor device including the oxide semiconductor film. The electrical characteristics of a semiconductor device including an oxide semiconductor film are improved. The reliability of a semiconductor device including an oxide semiconductor film is improved. A semiconductor device including an oxide semiconductor layer; a metal oxide layer in contact with the oxide semiconductor layer, the metal oxide layer including an In-M oxide (M is Ti, Ga, Y, Zr, La, Ce, Nd, or Hf); and a conductive layer in contact with the metal oxide layer, the conductive layer including copper, aluminum, gold, or silver is provided. In the semiconductor device, y/(x+y) is greater than or equal to 0.75 and less than 1 where the atomic ratio of In to M included in the metal oxide layer is In:M=x:y.
Abstract:
To form an oxide semiconductor film with a low density of localized levels. To improve electric characteristics of a semiconductor device including the oxide semiconductor. After oxygen is added to an oxide film containing In or Ga in contact with an oxide semiconductor film functioning as a channel, heat treatment is performed to make oxygen in the oxide film containing In or Ga transfer to the oxide semiconductor film functioning as a channel, so that the amount of oxygen vacancies in the oxide semiconductor film is reduced. Further, an oxide film containing In or Ga is formed, oxygen is added to the oxide film, an oxide semiconductor film is formed over the oxide film, and then heat treatment is performed.
Abstract:
Reducing hydrogen concentration in a channel formation region of an oxide semiconductor is important in stabilizing threshold voltage of a transistor including an oxide semiconductor and improving reliability. Hence, hydrogen is attracted from the oxide semiconductor and trapped in a region of an insulating film which overlaps with a source region and a drain region of the oxide semiconductor. Impurities such as argon, nitrogen, carbon, phosphorus, or boron are added to the region of the insulating film which overlaps with the source region and the drain region of the oxide semiconductor, thereby generating a defect. Hydrogen in the oxide semiconductor is attracted to the defect in the insulating film. The defect in the insulating film is stabilized by the presence of hydrogen.
Abstract:
A semiconductor device includes an oxide semiconductor layer over a first oxide layer; first source and drain electrodes over the oxide semiconductor layer; second source and drain electrodes over the first source and drain electrodes respectively; a second oxide layer over the first source and drain electrodes; a gate insulating layer over the second source and drain electrodes and the second oxide layer; and a gate electrode overlapping the oxide semiconductor layer with the gate insulating layer provided therebetween. The structure in which the oxide semiconductor layer is sandwiched by the oxide layers can suppress the entry of impurities into the oxide semiconductor layer. The structure in which the oxide semiconductor layer is contacting with the source and drain electrodes can prevent increasing resistance between the source and the drain comparing one in which an oxide semiconductor layer is electrically connected to source and drain electrodes through an oxide layer.
Abstract:
A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
Abstract:
An oxide semiconductor stacked film which does not easily cause a variation in electrical characteristics of a transistor and has high stability is provided. Further, a transistor which includes the oxide semiconductor stacked film in its channel formation region and has stable electrical characteristics is provided. An oxide semiconductor stacked film includes a first oxide semiconductor layer, a second oxide semiconductor layer, and a third oxide semiconductor layer which are sequentially stacked and each of which contains indium, gallium, and zinc. The content percentage of indium in the second oxide semiconductor layer is higher than that in the first oxide semiconductor layer and the third oxide semiconductor layer, and the absorption coefficient of the oxide semiconductor stacked film, which is measured by the CPM, is lower than or equal to 3×10−3/cm in an energy range of 1.5 eV to 2.3 eV.
Abstract:
Reducing hydrogen concentration in a channel formation region of an oxide semiconductor is important in stabilizing threshold voltage of a transistor including an oxide semiconductor and improving reliability. Hence, hydrogen is attracted from the oxide semiconductor and trapped in a region of an insulating film which overlaps with a source region and a drain region of the oxide semiconductor. Impurities such as argon, nitrogen, carbon, phosphorus, or boron are added to the region of the insulating film which overlaps with the source region and the drain region of the oxide semiconductor, thereby generating a defect. Hydrogen in the oxide semiconductor is attracted to the defect in the insulating film. The defect in the insulating film is stabilized by the presence of hydrogen.