Abstract:
An integrated circuit containing an n-channel finFET and a p-channel finFET has a dielectric layer over a silicon substrate. The fins of the finFETs have semiconductor materials with higher mobilities than silicon. A fin of the n-channel finFET is on a first silicon-germanium buffer in a first trench through the dielectric layer on the substrate. A fin of the p-channel finFET is on a second silicon-germanium buffer in a second trench through the dielectric layer on the substrate. The fins extend at least 10 nanometers above the dielectric layer. The fins are formed by epitaxial growth on the silicon-germanium buffers in the trenches in the dielectric layer, followed by CMP planarization down to the dielectric layer. The dielectric layer is recessed to expose the fins. The fins may be formed concurrently or separately.
Abstract:
A replacement metal gate transistor structure and method with thin silicon nitride sidewalls and with little or no high-k dielectric on the vertical sidewalls of the replacement gate transistor trench.
Abstract:
An integrated circuit with a thick TiN metal gate with a work function greater than 4.85 eV and with a thin TiN metal gate with a work function less than 4.25 eV. An integrated circuit with a replacement gate PMOS TiN metal gate transistor with a workfunction greater than 4.85 eV and with a replacement gate NMOS TiN metal gate transistor with a workfunction less than 4.25 eV. An integrated circuit with a gate first PMOS TiN metal gate transistor with a workfunction greater than 4.85 eV and with a gate first NMOS TiN metal gate transistor with a workfunction less than 4.25 eV.
Abstract:
An integrated circuit containing an n-channel finFET and a p-channel finFET is formed by forming a first polarity fin epitaxial layer for a first polarity finFET, and subsequently forming a hard mask which exposes an area for a second, opposite, polarity fin epitaxial layer for a second polarity finFET. The second polarity fin epitaxial layer is formed in the area exposed by the hard mask. A fin mask defines the first polarity fin and second polarity fin areas, and a subsequent fin etch forms the respective fins. A layer of isolation dielectric material is formed over the substrate and fins. The layer of isolation dielectric material is planarized down to the fins. The layer of isolation dielectric material is recessed so that the fins extend at least 10 nanometers above the layer of isolation dielectric material. Gate dielectric layers and gates are formed over the fins.
Abstract:
Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
Abstract:
An integrated circuit containing an n-channel finFET and a p-channel finFET has a dielectric layer over a silicon substrate. The fins of the finFETs have semiconductor materials with higher mobilities than silicon. A fin of the n-channel finFET is on a first silicon-germanium buffer in a first trench through the dielectric layer on the substrate. A fin of the p-channel finFET is on a second silicon-germanium buffer in a second trench through the dielectric layer on the substrate. The fins extend at least 10 nanometers above the dielectric layer. The fins are formed by epitaxial growth on the silicon-germanium buffers in the trenches in the dielectric layer, followed by CMP planarization down to the dielectric layer. The dielectric layer is recessed to expose the fins. The fins may be formed concurrently or separately.
Abstract:
A replacement metal gate transistor is formed with high quality gate dielectric under the high-k dielectric. The high quality gate dielectric is formed on the substrate at a temperature of at least 850° C. A sacrificial gate dielectric is formed on the high quality gate dielectric and a polysilicon replacement gate is formed on the sacrificial gate dielectric. The polysilicon replacement gate is removed leaving a gate trench. The sacrificial gate dielectric is removed from a bottom of the gate. A high-k dielectric is deposited into the gate trench. Metal gate material is deposited on the high-k dielectric.
Abstract:
An integrated circuit with a thick TiN metal gate with a work function greater than 4.85 eV and with a thin TiN metal gate with a work function less than 4.25 eV. An integrated circuit with a replacement gate PMOS TiN metal gate transistor with a workfunction greater than 4.85 eV and with a replacement gate NMOS TiN metal gate transistor with a workfunction less than 4.25 eV. An integrated circuit with a gate first PMOS TiN metal gate transistor with a workfunction greater than 4.85 eV and with a gate first NMOS TiN metal gate transistor with a workfunction less than 4.25 eV.
Abstract:
The gate-to-source and gate-to-drain overlap capacitance of a MOS transistor with a metal gate and a high-k gate dielectric are reduced by forming the high-k gate dielectric along the inside of a sidewall structure which has been formed to lie further away from the source and the drain.
Abstract:
A two-step thermal treatment method consists of performing ion implantation in a silicon substrate of the semiconductor device. A first thermal treatment procedure is performed on the semiconductor device. A second thermal treatment procedure is consecutively performed on the semiconductor device to reduce damage produced by the ion implantation.