摘要:
Provided is a semiconductor device. The semiconductor device includes a lower active region on a semiconductor substrate. A plurality of upper active regions protruding from a top surface of the lower active region and having a narrower width than the lower active region are provided. A lower isolation region surrounding a sidewall of the lower active region is provided. An upper isolation region formed on the lower isolation region, surrounding sidewalls of the upper active regions, and having a narrower width than the lower isolation region is provided. A first impurity region formed in the lower active region and extending into the upper active regions is provided. Second impurity regions formed in the upper active regions and constituting a diode together with the first impurity region are provided. A method of fabricating the same is provided as well.
摘要:
Provided is a semiconductor device. The semiconductor device includes a lower active region on a semiconductor substrate. A plurality of upper active regions protruding from a top surface of the lower active region and having a narrower width than the lower active region are provided. A lower isolation region surrounding a sidewall of the lower active region is provided. An upper isolation region formed on the lower isolation region, surrounding sidewalls of the upper active regions, and having a narrower width than the lower isolation region is provided. A first impurity region formed in the lower active region and extending into the upper active regions is provided. Second impurity regions formed in the upper active regions and constituting a diode together with the first impurity region are provided. A method of fabricating the same is provided as well.
摘要:
A method of forming a fin field effect transistor on a semiconductor substrate includes forming a fin-shaped active region vertically protruding from the substrate. An oxide layer is formed on a top surface and opposing sidewalls of the fin-shaped active region. An oxidation barrier layer is formed on the opposing sidewalls of the fin-shaped active region and is planarized to a height no greater than about a height of the oxide layer to form a fin structure. The fin structure is oxidized to form a capping oxide layer on the top surface of the fin-shaped active region and to form at least one curved sidewall portion proximate the top surface of the fin-shaped active region. The oxidation barrier layer has a height sufficient to reduce oxidation on the sidewalls of the fin-shaped active region about halfway between the top surface and a base of the fin-shaped active region. Related devices are also discussed.
摘要:
According to a nonvolatile memory device having a multi gate structure and a method for forming the same of the present invention, a gate electrode is formed using a damascene process. Therefore, a charge storage layer, a tunneling insulating layer, a blocking insulating layer and a gate electrode layer are not attacked from etching in a process for forming the gate electrode, thereby forming a nonvolatile memory device having good reliability.
摘要:
A non-volatile semiconductor device and a method of making such a device having a memory cell formation part and a peripheral circuit part having high and low-voltage transistor formation parts, wherein the device includes an anti-punch through region surrounding a drain region in the memory cell formation part, and surrounding drain and source regions of the low-voltage transistor formation part.
摘要:
Provided are a resistive memory device and an operating method for the resistive memory device. The operating method includes detecting a write cycle, determining whether or not to perform a recovery operation by comparing the detected write cycle with a first reference value, and upon determining to perform the recovery operation, performing the recovery operation on target memory cells of the memory cell array.
摘要:
A memory device includes a memory cell array having multiple memory cells arranged respectively in regions where first signal lines cross second signal lines. The memory device further includes a decoder having multiple line selection switch units connected respectively to the of first signal lines. Each of the multiple line selection switch units applies a bias voltage to a first signal line corresponding to each of the multiple line selection switch units in response selectively to a first switching signal and a second switching signal, voltage levels of which are different from each other in activated states.
摘要:
A method of fabricating a semiconductor device includes providing a substrate having a memory block and a logic block defined therein, forming a dummy gate pattern on the memory block; forming a first region of a first conductivity type at one side of the dummy gate pattern and a second region of a second conductivity type at the other side of the dummy gate pattern, and forming a nonvolatile memory device electrically connected to the first region.
摘要:
A method of forming a fin field effect transistor on a semiconductor substrate includes forming a fin-shaped active region vertically protruding from the substrate. An oxide layer is formed on a top surface and opposing sidewalls of the fin-shaped active region. An oxidation barrier layer is formed on the opposing sidewalls of the fin-shaped active region and is planarized to a height no greater than about a height of the oxide layer to form a fin structure. The fin structure is oxidized to form a capping oxide layer on the top surface of the fin-shaped active region and to form at least one curved sidewall portion proximate the top surface of the fin-shaped active region. The oxidation barrier layer has a height sufficient to reduce oxidation on the sidewalls of the fin-shaped active region about halfway between the top surface and a base of the fin-shaped active region. Related devices are also discussed.
摘要:
Formulations for enhanced mucosal absorption of heparin are disclosed. In one embodiment, a powdered heparin composition is made by dissolving an amphiphilic heparin derivative including heparin covalently bonded to a hydrophobic agent in a water phase, dispersing the water phase in an organic phase such that an emulsion is formed, and drying the emulsion. In another embodiment, an amorphiphilic heparin derivative dispersed in an oil phase is made by dissolving the amphiphilic heparin derivative in water or a water/organic co-solvent, dispersing the water or co-solvent in the oil phase, and evaporating the water or co-solvent. In another embodiment, heparin-containing nanoparticles having surfactant molecules associated with a hydrophobic agent on the outside of the nanoparticles are made by dissolving the amphiphilic heparin derivative in an aqueous solvent, mixing the surfactant with the aqueous solvent, and disrupting nanoparticles of the amphiphilic heparin derivative. Compositions made according to these methods are also described.