摘要:
The ammonia decomposition catalyst of the present invention is a catalyst for decomposing ammonia into nitrogen and hydrogen, including a catalytically active component containing at least one kind of transition metal selected from the group consisting of molybdenum, tungsten, vanadium, chromium, manganese, iron, cobalt, and nickel, preferably including: (I) a catalytically active component containing: at least one kind selected from the group consisting of molybdenum, tungsten, and vanadium; (II) a catalytically active component containing a nitride of at least one kind of transition metal selected from the group consisting of molybdenum, tungsten, vanadium, chromium, manganese, iron, cobalt, and nickel; or (III) a catalytically active component containing at least one kind of iron group metal selected from the group consisting of iron, cobalt, and nickel, and at least one metal oxide, thereby making it possible to effectively decompose ammonia into nitrogen and hydrogen at relatively low temperatures and at high space velocities to obtain high-pure hydrogen.
摘要:
Provided is a catalyst which can prevent a lowering in selectivity for a target product in a gas phase catalytic reaction and has an excellent frictional resistance. A catalyst which is a supported catalyst comprising an inert support that is coated with a catalyst powder, characterized in that the inert support is ring-shaped and has an outer periphery that is curved in the lengthwise direction of the support, and the catalyst is produced by granulation in a moisten environment. The above described catalyst is useful in the gas phase oxidation of propylene, isobutylene, tertiary-butyl alcohol or methyl tertiary-butyl ether to thereby produce an unsaturated aldehyde corresponding thereto, or in the gas phase oxidation of such an unsaturated aldehyde as described above to thereby produce an unsaturated carboxylic acid.
摘要:
Provided is an exhaust gas-purifying catalyst excelling in an exhaust gas-purifying performance. The exhaust gas-purifying catalyst contains a substrate, and a catalyst layer formed on the substrate and containing a precious metal and praseodymium.
摘要:
Provided is a catalyst with a noble metal efficiently supported on the surfacemost thereof. A composite oxide-containing layer is formed on a catalyst carrier so as to contain a perovskite-type composite oxide represented by the following general formula (1) and an other composite oxide, and a noble metal layer is further formed on the catalyst carrier so as to be supported on the surfacemost of the catalyst carrier by immersing the catalyst carrier formed with the composite oxide-containing layer in an aqueous noble metal salt solution to impregnate the catalyst carrier with the aqueous noble metal salt solution: AxByO3±δ (1) (wherein A represents at least one element selected from rare earth elements and alkaline earth metals; B represents at least one element selected from transition elements (excluding rare earth elements); x represents an atomic ratio of less than 1; y represents an atomic ratio of 1.0; and δ represents an oxygen excess or an oxygen deficiency.)
摘要:
The present invention is directed to methods for making metal oxide compositions, specifically, metal oxide compositions having high surface area, high metal/metal oxide content, and/or thermal stability with inexpensive and easy to handle materials. In one embodiment, the present invention is directed to methods of making metal and/or metal oxide compositions, such as supported or unsupported catalysts. The method includes combining a metal precursor with an organic acid to form a mixture and calcining the mixture for a period of time sufficient to form a metal oxide material.
摘要:
[Object] To provide an oxidation catalyst composition excellent in low temperature activity and a PM oxidation catalyst which can oxidize or burn particulate and the like from an internal combustion engine even at relatively low temperatures. [Solving Means] An oxidation catalyst composition contains cerium, manganese, and a metal M (M is a trivalent metal element excluding cerium). When the oxidation catalyst composition is analyzed by XPS so that orbital energies are subjected to peak separation using the Gaussian function, the Ce4+/Ce3+ atomic weight ratio (atomic % ratio) is 1.7 or higher and Mn2+ is in an amount of 5 atomic % or larger, wherein at least a part of the oxidation catalyst composition forms a composite. The above-mentioned metal M is ytterbium, thulium, erbium, holmium, dysprosium, gadolinium, europium, samarium, promethium, neodymium, praseodymium, scandium, yttrium, aluminum, gallium and/or the like.
摘要:
Provided is a process for readily producing fine particles of a solid solution having a small particle size, comprising a solid solution of zirconia, ceria and a rare earth oxide in a desired composition, and being highly crystalline.The process for producing the fine particles of the solid solution comprises the following steps in the order named: obtaining a melt comprising, in terms of mol % on an oxide basis, from 5 to 50% ZrO2, CeO2 and RE2O3 (where RE is at least one member selected from rare earth elements other than Ce) in total, from 10 to 50% RO (where R is at least one member selected from the group consisting of Mg, Ca, Sr, Ba and Zn), and from 30 to 75% B2O3; quenching the melt to obtain an amorphous material; heating the amorphous material to obtain precipitates containing crystals of a solid solution with ZrO2, CeO2 and RE2O3; and separating the crystals of the solid solution from the precipitates to obtain fine particles of the solid solution.
摘要翻译:本发明提供容易制造具有小粒径的固溶体的细颗粒的方法,其包含氧化锆,二氧化铈和稀土氧化物的固溶体,并具有高结晶性。 制造固溶体微粒的方法包括以下顺序的步骤:获得包含以氧化物为基准的摩尔%为5至50%的ZrO 2,CeO 2和RE 2 O 3(其中RE为 至少一种选自Ce以外的稀土元素的组分),10至50%的RO(其中R是选自Mg,Ca,Sr,Ba和Zn中的至少一种),并且从30至 75%B2O3; 淬火熔体以获得无定形材料; 加热无定形材料,得到含有ZrO 2,CeO 2和RE 2 O 3的固溶体晶体的析出物; 并将固溶体的晶体与析出物分离,得到固溶微细颗粒。
摘要:
To provide a method for industrially efficiently producing an exhaust gas purifying catalyst containing a perovskite-type composite oxide which is stable and has a less reduced specific surface area and is also effectively prevented from decreasing in its catalytic performance even in endurance in high temperature oxidative reducing atmospheres, a pre-crystallization composition containing elementary components constituting a perovskite-type composite oxide containing a noble metal is prepared, is mixed with a powder of theta-alumina and/or alpha-alumina to prepare a mixture, and the mixture is heat treated. Thus, the resulting perovskite-type composite oxide supported by the powder of theta-alumina and/or alpha-alumina can keep its thermostability at a sufficient level thereby to effectively prevent the catalytic performance from decreasing. This method can industrially efficiently produce the exhaust gas purifying catalyst.
摘要:
An exhaust gas purifying catalyst exhibiting high purification performance in the Hot range is provided. The exhaust gas purifying catalyst has a catalyst substrate and a catalyst coating layer formed on the catalyst substrate. The catalyst coating layer has a layered structure including an inside layer a containing the component (a-1) and the component (a-2) described below, and an outside layer b containing the component (b-1) and the component (b-2) described below. Component (a-1) and component (b-1): noble metals. Component (a-2): a compound oxide of (i) Ce, (ii) Zr and (iii) an element selected from the group consisting of rare earth elements, alkaline earth elements and Y, having a ratio of (ii) to (i) within the range of more than 40/100 but not more than 100/2 in terms of the weight ratio between CeO2 and ZrO2. Component (b-2): a compound oxide of elements including at least (v) and (vi) selected among (iv) Ce, (v) Zr and (vi) an element selected from the group consisting of rare earth elements, alkaline earth elements and Y, having a ratio of (v) to (iv) of not more than 40/100 in terms of the weight ratio between CeO2 and ZrO2.
摘要:
A catalyst-carrying filter includes a gas-inflow-side layer and a gas-outflow-side layer, the gas-inflow-side layer including a PM collection layer that has a small average pore size and a PM removal catalyst layer that supports or is coated with an oxidizing catalyst, and the gas-outflow-side layer including a gas purification catalyst layer that supports or is coated with a gas purification catalyst.