Abstract:
In a cyclic averaging analog to digital converter, reference voltages having a plurality of levels, each of which is inputted to one of a plurality of comparators in a flash type analog to digital converter, are shifted cyclically by a small voltage, and the outputs of the flash type analog to digital converter are added for every shift cycle in order to obtain an output digital signal. The outputs of a voltage dividing circuit provide the reference voltages with N levels, the levels differing cyclically by a small voltage. The N reference voltages are divided into groups, each of which consists of M elements N/M, switches are provided each of which selects one of the reference voltages one after another for an associated group N/M reference voltages are thus selected by these switches and are supplied to the comparators.
Abstract:
The invention comprises an n-bit analog-to-digital flash converter comprising 2.sup.n /2 input comparators, each having a first input coupled to receive the analog voltage to be converted and a second input coupled to a different reference voltage. The reference voltages of each consecutive input comparator are spaced apart two LSBs of the converter. Each input comparator has two output, OUT and an inverted version thereof, OUT. 2.sup.n -1 consecutive latches are provided. Every other latch receives at its inputs the OUT and OUT signals from a single associated input comparator. All other latches receive the OUT signal of one of the input comparators and the OUT signal of an adjacent input comparator. The latches having inputs coupled to the OUT and OUT signals of a single input comparator produce a comparison output which change state every two LSBs of the converter and the latches having one input coupled to the OUT signal of one input comparator and the OUT signal of an adjacent input comparator produce comparison signals which change state halfway between the output signals of the adjacent latches. Thus, a comparison output is provided for every LSB of the full scale range of the converter using only 2.sup.n /2 input comparators.
Abstract:
An SAR analog-to-digital conversion circuit includes: first and second CDACs; first to third comparators respectively comparing outputs of the first and second CDACs, output levels of the first and third CDACs with a reference level; an arithmetic operation circuit; and an SAR control circuit, wherein the SAR control circuit: at each step, determines in which of four ranges output levels of the sampled and held signals of the first and second CDACs are included, the four ranges corresponding to the conversion range being quartered, determines two bits of the digital data and adjusts the output levels of the first and second CDACs so that a level at 1/4 or 3/4 of the voltage range agrees with the intermediate level, and controls first and second switches so that the voltage range is set to be a conversion range at a next step.
Abstract:
An input signal is compared to 2N−1 reference voltages to generate 2N−1 corresponding binary valued comparison signals, delaying at least one of the comparison signals by a variable delay and detecting a difference in arrival time between the delayed signal and another comparison signal. A time interpolation signal encoding a plurality of bins within a least significant bit quantization level is generated, based on the detected difference in arrival time. An M-bit output data is generated based on the comparison signals and the time interpolation signal. A non-uniformity of a code density of the M-bit output data is detected, and based on the detecting the delaying is varied.
Abstract:
An analog-to-digital conversion apparatus which has a variable resolution and allows a reduction in power consumption. This apparatus comprises an analog-to-digital converter (ADC) of parallel type, a controller, and an interpolation circuit. The analog-to-digital converter has a plurality of comparators connected in parallel, each for comparing potentials of an analog input signal and a reference signal. The controller generates a control signal for controlling the resolution of the analog-to-digital converter. Specifically, the controller controls the number of comparators (CMP) to operate by means of the control signal, thereby determining the resolution. The interpolation circuit interpolates the output data of the comparators that are disabled depending on the resolution. The controller avoids simultaneous operation of two adjoining comparators when the analog-to-digital converter is operated at a resolution lower than its maximum resolution.
Abstract:
A comparator includes a sampling capacitor, a first switching unit which is connected to an input end of the sampling capacitor and which applies an input signal to the input end of the sampling capacitor, a second switching unit which is connected to the input end of the sampling capacitor and which applies a reference signal to the input end of the sampling capacitor, an output transistor connected to an output end of the sampling capacitor in a source follower connection manner or an emitter follower connection manner, and a third switching unit which is connected to an output end of the sampling capacitor and which maintains maintaining a voltage at the output end of the sampling capacitor to be constant. The input signal is compared with the reference signal.
Abstract:
A comparator includes a sampling capacitor, a first switching unit which is connected to an input end of the sampling capacitor and which applies an input signal to the input end of the sampling capacitor, a second switching unit which is connected to the input end of the sampling capacitor and which applies a reference signal to the input end of the sampling capacitor, an output transistor connected to an output end of the sampling capacitor in a source follower connection manner or an emitter follower connection manner, and a third switching unit which is connected to an output end of the sampling capacitor and which maintains maintaining a voltage at the output end of the sampling capacitor to be constant. The input signal is compared with the reference signal.
Abstract:
An apparatus and method for increasing the resolution of analog-to-digital conversion devices and systems is described. The described apparatus and method operate without significantly increasing the complexity or conversion time of conventional analog-to-digital conversion architectures. The improved resolution is accomplished by detecting the time-dependent response characteristics of comparators used within an analog-to-digital converter. The detected response characteristics, such as the response pattern or the response time, are used to estimate the overdrive voltage on the comparator of interest and to thereby provide additional bits to the analog-to-digital conversion process. In those applications where the response characteristics affect the settling characteristics of the converter output bits, additional resolution may be attained by detecting the settling characteristics, such as the settling pattern or settling time, of the converter output bits, particularly the least significant bit.
Abstract:
An A/D converter for driving a plurality of delay units forming a pulse delay circuit by an analog input signal Vin and digitalizing the number of delay units through which a pulse signal passes in the pulse delay circuit at predetermined timings, provided with a plurality of pulse position digitalizing units used for A/D conversion and inputting delay pulses from the delay units of the pulse delay circuit to the pulse position digitalizing units through an inverter group comprised of inverters with different inversion levels (switching threshold level) by different input timings. The digital data obtained by the pulse position digitalizing units are added by an adder.
Abstract:
An analog to digital converter includes a first amplifier array connected to taps from a reference ladder, a second amplifier array, wherein each amplifier in the first amplifier array is connected to only two amplifiers of the second amplifier array, a third amplifier array, wherein each amplifier in the second amplifier array is connected to only two amplifiers of the third amplifier array, and an encoder connected to outputs of the third amplifier array that converts the outputs to an N-bit digital signal.