Abstract:
A capacitor holder comprising a body part formed in a shape into which a tip end of a capacitor can be fitted; and a lead part which is fixed to the body part and can be soldered to a predetermined fitting location. The body part has an opening through which the tip end of the capacitor is exposed, and an end surface abutment portion which abuts a tip end surface of the capacitor in a vicinity of a pressure valve, when the tip end of the capacitor is fitted into the body part. The lead part is fixed to the body part at a position opposite to the capacitor with respect to a reference plane, which is a plane includes the tip end surface of the capacitor abutting the end surface abutment portion.
Abstract:
The circuit board includes a ceramic sintered body and a metal wiring layer provided on at least one primary surface thereof with a glass layer interposed therebetween, and when the cross section of the circuit board perpendicular to the primary surface of the ceramic sintered body is viewed, the ratio of the length of an interface between the glass layer and the metal wiring layer to a length of the glass layer in a direction along the primary surface is 1.25 to 1.80.
Abstract:
Disclosed herein are a printed circuit board (PCB) and a probe including the same. The probe includes a transducer, a PCB having a pattern part contacting the transducer via face-to-face contact, and a bonding member bonding the transducer to the pattern part of the PCB. The bonding part of the PCB is provided with the pattern part to increase a bonding area of the bonding part and to allow the bonding member to contact not only a metal layer of the bonding part but also an electrical insulation part thereof, thereby improving a bonding force between the transducer and the PCB. As a result, the transducer can be reliably bonded to the PCB, so that performance of the transducer can be prevented from being deteriorated due to defective connection between the PCB and the transducer.
Abstract:
The disclosure discloses a crystal device without an external package, which comprises: a crystal body (21) and two pins (22), wherein the crystal body (21) is a cylindrical body port of a crystal with the external package (15) and redundant pins (12, 13) being removed, and is arranged on a Printed Circuit Board (PCB) horizontally. The two pins (22) are connected to a bottom end of the crystal body (21). Extension parts of the two pins (22) are inclined towards the PCB, and become horizontal when they reach the PCB and are welded to the PCB, and a spacing between the two pins (22) increases gradually. The disclosure also discloses a method for manufacturing a crystal device without a package. The device and method can reduce the cost and make the welding more convenient.
Abstract:
An integrated circuit board includes a bridging filtering capacitor, a bypass capacitor, a thermistor, and a varistor. The integrated circuit board further includes an electrolytic capacitor set having a plurality of electrolytic capacitors, which are arranged in parallel and adjacent to each other, and a mounting frame for grouping the electrolytic capacitors. The present invention uses the above elements to reduce the vertical height, the horizontal width, and the occupied area. Therefore, the overall dimension of the circuit board can be reduced to make the electronic devices smaller, especially for thin electronic devices such as LCD TVs and screens.
Abstract:
A constant-temperature type crystal oscillator includes: a crystal unit that is installed on one principal surface of a circuit substrate, and chip resistors, which function as heating elements, and which are installed on the other principal surface of the circuit substrate so as to face a principal surface of the crystal unit, the chip resistors heating up the crystal unit to keep an operational temperature of the crystal unit constant. A heating metal film facing the principal surface of the crystal unit is provided on the one principal surface of the circuit substrate. A heat conducting material is interposed between the principal surface of the crystal unit and the heating metal film to perform thermal coupling therebetween. The heating metal film is thermally coupled to electrode terminals of the chip resistors via a plurality of electrode through holes.
Abstract:
Embodiments of the present invention provide an apparatus, a system, and a method, and include a generally rectilinear body having a first surface and a second surface. The second surface is substantially perpendicular to the first surface. An electrically operative element is disposed on the first surface, and has opposite ends. Spaced apart terminations are disposed on the second surface, and are electrically coupled with the opposite ends of the electrically operative element. The terminations are designed to be coupled with a substrate.
Abstract:
A resist 7 of a predetermined thickness is formed on a printed circuit board 1 except electrode-opposing portions 1a (FIG. 1A), and a silk screen printed layer 9 of a predetermined thickness is formed on the resist 7 (FIG. 1B). Thereafter, a concave portion 2b of a film capacitor 2 is bonded to the silk screen printed layer 9 by an adhesive double coated tape 6 of a predetermined thickness in such a manner that electrode portions 2a of the film capacitor 2 are opposed respectively to the electrode-opposing portions 1a of the printed circuit board 1 (FIG. 1D). Here, the sum of the thicknesses of the resist 7, silk screen printed layer 9 and adhesive double coated tape 6 is not smaller than a concave-convex height difference L1 of the film capacitor 2, and with this arrangement the electrode portions 2a of the film capacitor 2 are prevented from interfering with the printed circuit board 1. An adhesive is not used, and therefore a problem with respect to environment-affecting substances is solved, and at the same time difficulty involved in the control of a bonding strength can be overcome.
Abstract:
An oscillator assembly includes an oscillator circuit that is configured to generate a frequency signal. A temperature compensation circuit is in communication with the oscillator circuit and adapted to adjust the frequency signal in response to changes in temperature. The oscillator and temperature compensation circuits are located within an oven. A heater and a temperature sensor in communication with the heater are also both located in the oven. The temperature sensor is adapted to directly control the heater in response to changes in temperature. In one embodiment, the oscillator components are mounted to a ball grid array substrate which, in turn, is mounted on a printed circuit board. In this embodiment, a resonator overlies the ball grid array substrate and a lid covers and defines an oven and enclosure for the resonator and the ball grid array substrate. The oscillator and temperature compensation circuit are defined on the ball grid array substrate.
Abstract:
A device for the shakeproof accommodation of electrical special components and/or electrical circuits, particularly in a development as a second component set in a control unit, is made up of a carrier, onto which a circuit substrate, having special components fastened to it, is mounted in an electrically insulated manner over a partial surface, preferably by adhesion