Abstract:
A light-emitting diode driving device enabling an excellent heat-dissipation function and high-efficient driving is disclosed. The disclosed LED driving device comprises: a power source unit providing an alternate current voltage; a rectification unit communicatively coupled to the power source and rectifying the alternate current voltage; a driving signal generation unit configured to receive the rectified voltage from the rectification unit and generate a primary driving signal by using the rectified voltage; and an LED driving signal modulation unit communicatively coupled to the driving signal generator, the LED driving signal modulation unit configured to receive the primary driving signal and generating a secondary pulse driving signal by modulating the primary driving signal, and LED groups including LEDs and configured to receive the primary driving signal or the second pulse driving signal such that the LED groups operate responsive to the primary driving signal or the secondary pulse driving signal.
Abstract:
An LED is provided to include: a first conductive type semiconductor layer; an active layer positioned over the first conductive type semiconductor layer; a second conductive type semiconductor layer positioned over the active layer; and a defect blocking layer comprising a masking region to cover at least a part of the top surface of the second conductive semiconductor layer and an opening region to partially expose the top surface of the second conductive type semiconductor layer, wherein the active layer and the second conductive type semiconductor layer are disposed to expose a part of the first conductive type semiconductor layer, and wherein the defect blocking layer comprises a first region and a second region surrounding the first region, and a ratio of the area of the opening region to the area of the masking region in the first region is different from a ratio of the area of the opening region to the area of the masking region in the second region.
Abstract:
Exemplary embodiments of the present invention disclose a semiconductor device and a method of fabricating the same. The semiconductor device includes a gallium nitride substrate, a plurality of semiconductor stacks disposed on the gallium nitride substrate, and an insulation pattern disposed between the gallium nitride substrate and the plurality of semiconductor stacks, the insulation pattern insulating the semiconductor stacks from the gallium nitride substrate.
Abstract:
Exemplary embodiments of the present invention provide a high efficiency light emitting diode including a semiconductor stack including a first-type compound semiconductor layer, an active layer, and a second-type compound semiconductor layer, a first electrode disposed on the semiconductor stack, and a graphene-metamaterial laminate structure disposed between the first electrode and the semiconductor stack.
Abstract:
A light emitting device including first, second, and third light emitting stacks each including first and second conductivity type semiconductor layers, a first lower contact electrode in ohmic contact with the first light emitting stack, and second and third lower contact electrodes respectively in ohmic contact with the second conductivity type semiconductor layers of the second and third light emitting stacks, in which the first lower contact electrode is disposed between the first and second light emitting stacks, the second and third lower contact electrodes are disposed between the second and third light emitting stacks, and the first, second, and third lower contact electrodes include transparent conductive oxide layers.
Abstract:
A light emitting diode (LED) pixel for a display including a first LED stack having a first well layer, a second LED stack disposed on the first LED stack and having a second well layer, a third LED stack disposed on the second LED stack and having a third well layer, a first electrode disposed on the first LED stack and in ohmic contact with the first LED stack, a second electrode disposed on the second LED stack and in ohmic contact with a surface of the second LED stack, and a third electrode in ohmic contact with a surface of the third LED stack, in which the first well layer includes at least one base material different from that of the second well layer.
Abstract:
A light emitting diode (LED) stack for a display including a first LED stack including a first conductivity-type semiconductor layer and a second conductivity-type semiconductor layer, a second LED stack disposed on the first LED stack, a third LED stack disposed on the second LED stack, an intermediate bonding layer disposed between the first LED stack and the second LED stack to bond the second LED stack to the first LED stack, an upper bonding layer disposed between the second LED stack and the third LED stack to couple the third LED stack to the second LED stack, and a first hydrophilic material layer disposed between the first LED stack and the upper bonding layer.
Abstract:
A display apparatus including a display substrate, a plurality of light emitting devices disposed on the display substrate, at least one of the light emitting devices including a first LED sub-unit, a second LED sub-unit disposed on the first LED sub-unit, and a third LED sub-unit disposed on the second LED sub-unit, and a molding layer covering side surfaces of the light emitting devices and exposing upper surfaces thereof, in which the third LED sub-unit is disposed closer to an upper surface of the light emitting device than the first LED sub-unit.
Abstract:
A light emitting device includes a first light emitting part including a first n-type semiconductor layer, and a first mesa structure including a first active layer, a first p-type semiconductor layer, and a first transparent electrode vertically stacked one over another and exposing a portion of a first surface of the first n-type semiconductor layer, a second light emitting part spaced apart from the first mesa structure, and including a second n-type semiconductor layer, a second active layer, a second p-type semiconductor layer, and a second transparent electrode and exposing a portion of a first surface of the second n-type semiconductor layer, and a first bonding layer on which the first and second light emitting parts are disposed and electrically coupling the first n-type semiconductor layer and the second n-type semiconductor layer to each other.
Abstract:
A light emitting device including a first LED sub-unit, a second LED sub-unit disposed under the first LED sub-unit, a third LED sub-unit disposed under the second LED sub-unit, a first ohmic electrode interposed between the first LED sub-unit and the second LED sub-unit, and in ohmic contact with the first LED sub-unit, a second ohmic electrode interposed between the second LED sub-unit and the third LED sub-unit, and in ohmic contact with the second LED sub-unit, a third ohmic electrode interposed between the second ohmic electrode and the third LED sub-unit, and in ohmic contact the third LED sub-unit, a plurality of electrode pads disposed on the first LED sub-unit, in which at least one of the first ohmic electrode, the second ohmic electrode, and the third ohmic electrode has a patterned structure.