摘要:
Systems and methods for testing microelectronic imagers and microfeature devices are disclosed herein. In one embodiment, a method includes providing a microfeature workpiece including a substrate having a front side, a backside, and a plurality of microelectronic dies. The individual dies include an integrated circuit and a plurality of contact pads at the backside of the substrate operatively coupled to the integrated circuit. The method includes contacting individual contact pads with corresponding pins of a probe card. The method further includes testing the dies. In another embodiment, the individual dies can further comprise an image sensor at the front side of the substrate and operatively coupled to the integrated circuit. The image sensors are illuminated while the dies are tested.
摘要:
Methods for forming conductive vias include forming one or more via holes in a substrate. The via holes may be formed with a single mask, with protective layers, bond pads, or other features of the substrate acting as hard masks in the event that a photomask is removed during etching processes. The via holes may be configured to facilitate adhesion of a dielectric coating that includes a low-K dielectric material to the surfaces thereof. A barrier layer may be formed over surfaces of each via hole. A base layer, which may comprise a seed material, may be formed to facilitate the subsequent, selective deposition of conductive material over the surfaces of the via hole. The resulting semiconductor devices, intermediate structures, and assemblies and electronic devices that include the semiconductor devices that result from these methods are also disclosed.
摘要:
Methods for forming conductive vias include foiling one or more via holes in a substrate. The via holes may be formed with a single mask, with protective layers, bond pads, or other features of the substrate acting as hard masks in the event that a photomask is removed during etching processes. The via holes may be configured to facilitate adhesion of a dielectric coating that includes a low-K dielectric material to the surfaces thereof A barrier layer may be fowled over surfaces of each via hole. A base layer, which may comprise a seed material, may be formed to facilitate the subsequent, selective deposition of conductive material over the surfaces of the via hole. The resulting semiconductor devices, intermediate structures, and assemblies and electronic devices that include the semiconductor devices that result from these methods are also disclosed.
摘要:
Methods for forming conductive vias include forming one or more via holes in a substrate. The via holes may be formed with a single mask, with protective layers, bond pads, or other features of the substrate acting as hard masks in the event that a photomask is removed during etching processes. The via holes may be configured to facilitate adhesion of a dielectric coating that includes a low-K dielectric material to the surfaces thereof. A barrier layer may be formed over surfaces of each via hole. A base layer, which may comprise a seed material, may be formed to facilitate the subsequent, selective deposition of conductive material over the surfaces of the via hole. The resulting semiconductor devices, intermediate structures, and assemblies and electronic devices that include the semiconductor devices that result from these methods are also disclosed.
摘要:
An interconnect for testing a semiconductor component includes a substrate, and interconnect contacts on the substrate configured to electrically engage component contacts on a semiconductor component. Each interconnect contact includes a compliant conductive layer formed as a conductive spring element. In addition, the complaint conductive layer includes a tip for engaging the component contact and a spring segment portion for resiliently supporting the tip. A method for fabricating the interconnect includes the steps of shaping the substrate, forming a conductive layer on a shaped portion of the substrate and removing at least some of the shaped portion. The shaped portion can comprise a raised step or dome, or a shaped recess in the substrate. The conductive layer can comprise a metal, a conductive polymer or a polymer tape can include a penetrating structure or penetrating particles. The interconnect can be used to construct wafer level test systems, and die level test systems as well, for semiconductor components such as wafers, dice and packages.
摘要:
A method of processing a substrate includes physically contacting an exposed conductive electrode of an electrostatic carrier with a conductor to electrostatically bond a substrate to the electrostatic carrier. The conductor is removed from physically contacting the exposed conductive electrode. Dielectric material is applied over the conductive electrode. The substrate is treated while it is electrostatically bonded to the electrostatic carrier. In one embodiment, a conductor is forced through dielectric material that is received over a conductive electrode of an electrostatic carrier to physically contact the conductor with the conductive electrode to electrostatically bond a substrate to the electrostatic carrier. After removing the conductor from the dielectric material, the substrate is treated while it is electrostatically bonded to the electrostatic carrier. Electrostatic carriers for retaining substrates for processing, and such assemblies, are also disclosed.
摘要:
A method of processing a substrate includes physically contacting an exposed conductive electrode of an electrostatic carrier with a conductor to electrostatically bond a substrate to the electrostatic carrier. The conductor is removed from physically contacting the exposed conductive electrode. Dielectric material is applied over the conductive electrode. The substrate is treated while it is electrostatically bonded to the electrostatic carrier. In one embodiment, a conductor is forced through dielectric material that is received over a conductive electrode of an electrostatic carrier to physically contact the conductor with the conductive electrode to electrostatically bond a substrate to the electrostatic carrier. After removing the conductor from the dielectric material, the substrate is treated while it is electrostatically bonded to the electrostatic carrier. Electrostatic carriers for retaining substrates for processing, and such assemblies, are also disclosed.
摘要:
Photolithography patterned spring contacts are disclosed. The spring contacts may be fabricated using thin film processing techniques. A substrate, such as a silicon wafer or a carrier substrate is provided. At least one layer of a metal or alloy film may be deposited on the substrate or on at least one intervening release layer and patterned to form metal traces. A stressable material, exhibiting an at least partially tensile stress state, may be deposited on the metal traces in a localized region. A portion of the substrate or a portion of the intervening release layer underneath the metal traces may be removed by etching, causing the metal traces to curl upward resulting in the spring contacts. The spring contacts may be used as compliant electrical contacts for electrical devices, such as integrated circuits or carrier substrates. The compliant electrical contacts may also be used for probe cards to test other electrical devices.
摘要:
Microelectronic imaging units and methods for manufacturing a plurality of imaging units at the wafer level are disclosed herein. In one embodiment, a method for manufacturing a plurality of imaging units includes providing an imager workpiece having a plurality of imaging dies including integrated circuits, external contacts electrically coupled to the integrated circuits, and image sensors operably coupled to the integrated circuits. The individual image sensors include at least one dark current pixel at a perimeter portion of the image sensor. The method includes depositing a cover layer onto the workpiece and over the image sensors. The method further includes patterning and selectively developing the cover layer to form discrete volumes of cover layer material over corresponding image sensors. The discrete volumes of cover layer material have sidewalls aligned with an inboard edge of the individual dark current pixels such that the dark current pixels are not covered by the discrete volumes.
摘要:
An interconnect for testing a semiconductor component includes a substrate, and interconnect contacts on the substrate configured to electrically engage component contacts on a semiconductor component. Each interconnect contact includes a compliant conductive layer formed as a conductive spring element. In addition, the complaint conductive layer includes a tip for engaging the component contact and a spring segment portion for resiliently supporting the tip. A method for fabricating the interconnect includes the steps of shaping the substrate, forming a conductive layer on a shaped portion of the substrate and removing at least some of the shaped portion. The shaped portion can comprise a raised step or dome, or a shaped recess in the substrate. The conductive layer can comprise a metal, a conductive polymer or a polymer tape can include a penetrating structure or penetrating particles. The interconnect can be used to construct wafer level test systems, and die level test systems as well, for semiconductor components such as wafers, dice and packages.