Abstract:
Disclosed is an electrohydraulic brake system for use in vehicles which can be braked by means of generator operation of an electric drive motor. The brake system comprises, inter alia, a brake booster and an electronic control unit which is provided for distributing the braking effect between a generative component or recuperation braking component and a friction braking component. In order to optimize the take-up of pressure medium, in particular during recuperation braking, the brake booster (6, 11, 15) is configured to be electrically actuated by the electronic control unit (10). The boosting force generated by the brake booster (6, 11, 15) is exerted as a function of variables relevant to the brake system.
Abstract:
A method for detecting a malfunction of a brake system may include measuring a deceleration/acceleration upon braking and determining whether the brake system has the malfunction by comparing the measured deceleration/acceleration and a required deceleration/acceleration. If it is determined that the brake system has the malfunction, the method further includes determining whether a braking interval is an interval where braking is performed only through regenerative braking. If so, the method determines that a regenerative brake system has the malfunction. If not, the method further includes determining whether a left friction brake system or a right friction brake system has the malfunction by measuring a yaw rate value and determining whether a front wheel friction brake system or a rear-wheel friction brake system has the malfunction by using a variation amount of a measurement value of the deceleration/acceleration.
Abstract:
When a brake ECU is started up rapidly by a brake pedal operation, the brake ECU executes a depression force fluid pressure mode. When the control pressure detected by a control pressure sensor becomes smaller than a switching determination threshold value, the brake ECU determines that an operation of returning a brake pedal is being performed, and switches the braking mode from the depression force fluid pressure mode to a normal control mode. Accordingly, even when the operation of a stroke simulator has been started, no uncomfortable feeling is given to a driver. Further, even when the operation of returning the brake pedal is not being performed, the braking mode is switched from the depression force fluid pressure mode to a simulator non-operation control fluid pressure mode when a vehicle starts to travel. Consequently, desired braking force can be rapidly generated.
Abstract:
The vehicle braking device has a hydraulic braking force generating device, a regeneration braking force generating device, a braking operation amount detection portion and a required braking force calculation portion. The vehicle braking device controls the hydraulic braking force generating device and the regeneration braking force generating device so as to apply the required braking force to the wheels. The vehicle braking device has a braking force adjustment control portion for executing braking force adjustment control for limiting the rate at which the regeneration braking force is increased and increasing the hydraulic braking force before the current regeneration braking force reaches a maximum regeneration braking force, that is, the maximum braking force that can be generated by the regeneration braking force generating device.
Abstract:
A method for operating a regenerative braking system of a vehicle includes: applying control to at least one valve of a brake circuit, before and/or during operation of a generator of the braking system, so that brake fluid is displaced out of a brake master cylinder and/or out of the at least one brake circuit into at least one reservoir volume; defining a target force difference variable regarding a booster force exerted by a brake booster in consideration of at least one of a generator braking torque information item, a brake master cylinder pressure variable, and an evaluation variable derived from at least the generator braking torque information item or the brake master cylinder pressure variable; and controlling the brake booster in consideration of the defined target force difference variable.
Abstract:
A brake system for a motor vehicle includes on at least one wheel, an electric-regenerative brake and a friction brake that can be hydraulically actuated by a first generator of brake pressure using a fluid, wherein the friction brake can be connected via an actuatable inlet valve to the first generator of brake pressure and via a first actuatable outlet valve to a pressure accumulator, so that a volume of fluid applied by the first generator of brake pressure can be diverted via the first outlet valve into the pressure accumulator. The first generator of brake pressure can be connected to the pressure accumulator via a further hydraulic connection having a second actuatable outlet valve. A method for operating a brake system is also disclosed.
Abstract:
A method to control a vehicle including control of regenerative brakes and friction brakes includes monitoring a desired corner force and moment distribution, monitoring real-time actuator constraints including a braking torque limit of each of the regenerative brake, determining a regenerative braking torque for each of the regenerative brakes based upon the desired corner force and moment distribution and the real-time actuator constraints, determining a friction braking torque for each of the friction brakes based upon the desired corner force and moment distribution and the determined regenerative braking torque for each of the regenerative brakes, and controlling the vehicle based upon the determined regenerative braking torques and the determined friction braking torques.
Abstract:
A hybrid vehicle includes a braking device configured to apply a frictional braking torque to a vehicle wheel in response to movement of an input member of a brake pedal, an electric motor configured to apply a regenerative braking torque to the vehicle wheel, and a control unit. During braking, the control unit is configured to determine a limit value of the regenerative braking torque that can be generated in accordance with an operating condition of the charging device or the electric motor, and reduce a ratio of the regenerative braking torque to the frictional braking torque before the regenerative braking torque reaches the limit value.
Abstract:
Systems and methods for improving operation of a hybrid vehicle are presented. In one example, a method for transitioning between driveline braking and wheel brakes is provided.
Abstract:
A braking control device, includes a regenerative braking control part, a wheel speed differential detection part, and a regenerative restriction part. The regenerative braking control part is configured to carrying out regenerative braking on the drive wheels based on a deceleration request operation. The wheel speed differential detection part is configured to determine a wheel speed differential between the driven wheel speed and the regenerative braking wheel speed. The regenerative restriction part is configured to restrict the regenerative braking amount when the wheel speed differential exceeds a restriction initiation threshold value. The regenerative restriction part, during restriction of the regenerative braking amount, is configured to repeatedly carrying out a restriction in accordance with a large restriction phase in which a decrease in gradient of the regenerative braking amount is large and a restriction in accordance with a small restriction phase in which the decrease in gradient is small.