Abstract:
An internal structure of a magnetic material is phase-separated into at least a first phase and a second phase. At least one of the first phase and the second phase includes a compound having a perovskite structure. The first phase and the second phase include Mn, Sn, and N. According to this, it is possible to obtain a magnetic material in which magnetic properties such as a coercive force are improved. In addition, in a case where a rare-earth element is not included in elements that constitute the magnetic material, it is possible to obtain a magnetic material having corrosion resistance.
Abstract:
A method for producing a turbine rotor of an exhaust gas turbocharger, wherein the turbine rotor includes a turbine wheel with a hub and turbine blades that extend from the hub, and a shaft, includes the steps of: providing the turbine wheel and the shaft; forming a protective layer by applying or introducing a halogen on or in the surface of the turbine wheel and subsequently heat-treating the turbine wheel; and connecting the shaft to the hub of the turbine wheel after the protective coating is formed.
Abstract:
A method is provided for treating a bipolar ESC having a front surface and a back surface, the front surface including an anodized layer. The method includes eliminating the anodized layer, disposing a new anodized layer onto the front surface, and treating the new anodized layer with water to seal the new anodized layer.
Abstract:
A method for producing a carbonitrided member comprising the steps of carburizing a steel part having a composition of, by mass percent, C: 0.10 to 0.35%, Si: 0.15 to 1.0%, Mn: 0.30 to 1.0%, Cr: 0.40 to 2.0%, S: 0.05% or less with the balance being Fe and impurities in a carburizing atmosphere of 900 to 950° C. The carburized steel part is carbonitrided in a carbonitriding atmosphere with the temperature of 800 to 900° C. and the nitrogen potential of 0.2 to 0.6%. The carbonitrided steel part is qhenched and then shot peened. The shot peening treatment may be further performed while heating to a temperature not higher than 350° C. or immediately after heating to a temperature not higher than 350° C. After quenching, the shot peening treatment may be further performed after tempering in the temperature range exceeding 250° C. and not higher than 350° C.
Abstract:
The present invention pertains to a method for producing a black-plated steel sheet capable of being blackened in a short amount of time, and exhibiting an excellent ability to maintain a black appearance after processing. As an original sheet, the sheet used is a Zn-plating steel sheet which contains molten Al and Mg and has a Zn-plating layer containing molten Al and Mg, containing Al in the amount of 0.1-22.0 mass %, inclusive, and containing Mg in the amount of 0.1-1.5 mass %, inclusive. The plating layer is blackened by causing the molten-plating steel sheet to contact water vapor inside a tightly sealed container. When doing so, the concentration of oxygen inside the tightly sealed container is 13% or less.
Abstract:
Methods of preparing a surface of a cast zirconium alloy substrate for oxidation, the method including hot isostatic pressing a cast substrate of near shape dimensions, heating the cast substrate, machining the cast substrate to desired shape dimensions, and treating the surface of the cast substrate to accept an oxide layer. in some examples, treating the surface of the cast substrate may include polishing the surface, peening the polished surface, and finishing the peened surface. Additional or alternative examples may include heat treating a cast substrate of near shape dimensions to define a homogenized grain structure within the cast substrate, machining the heat treated cast substrate to desired shape dimensions, and surface treating the machined cast substrate to modify its structure to define a recrystallized modified grain structure defining a reduced grain boundary size.
Abstract:
A strip product consists of a metallic substrate, such as stainless steel, and a coating, which in turn comprises at least one metallic layer and one reactive layer. The coated strip product is produced by providing the different layers, preferably by coating, and thereafter oxidizing the coating to accomplish a conductive surface layer comprising perovskite and/or spinel structure.
Abstract:
A method for producing a turbine rotor of an exhaust gas turbocharger, wherein the turbine rotor includes a turbine wheel with a hub and turbine blades that extend from the hub, and a shaft, includes the steps of: providing the turbine wheel and the shaft; forming a protective layer by applying or introducing a halogen on or in the surface of the turbine wheel and subsequently heat-treating the turbine wheel; and connecting the shaft to the hub of the turbine wheel after the protective coating is formed.
Abstract:
A process for producing a carbonitrided part comprising the steps of preparing a base steel part, having a composition comprising, in mass percent, C: 0.10 to 0.24%, Si: 0.15 to 1.0%, Mn: 0.30 to 1.0%, Cr: 0.40 to 2.0%, S: 0.05% or less, with the balance being Fe and impurities and performing the following steps 1-4 in sequence. Step 1 is carburizing the base steel part under a carburizing atmosphere at a temperature of 900 to 950° C. Step 2 is carbonitriding the base steel part carburized according to step 1 under a carbonitriding atmosphere at a temperature of 800 to 900° C. with a nitrogen potential of 0.2 to 0.6%. Step 3 is quenching the base steel part carbonitrided according to step 2. Step 4 is tempering the base steel part quenched according to step 3 at a temperature of more than 250° C. to not more than 350° C.