Abstract:
A method for manufacturing a flexible printed circuit board includes preliminarily thermally deforming s substrate through heating, forming a circuit pattern with a conductive paste on the preliminarily thermally deformed substrate, and firing the circuit pattern. A flexible printed circuit board includes a substrate, and a circuit pattern formed by firing a conductive paste on a first surface of the substrate. The substrate is preliminarily thermally deformed and, thus, a shrinkage variation thereof before and after firing the conductive paste is zero. Dimensional stability when firing the circuit pattern printed with the conductive paste can be ensured, deterioration of adhesion between the circuit pattern and the substrate attributable to film deformation upon firing can be prevented, and stable adhesion of the circuit pattern can be maintained even after firing.
Abstract:
Provided is a filter medium for a liquid filter, having a three-dimensional micropore structure of a multi-layered structure using a multilayer nanofiber web that is obtained by performing air-electrospinning, to thus be thin but have high efficiency and long life, a method of manufacturing the filter medium using the multilayer nanofiber web, and a liquid filter using the filter medium. The filter medium for a liquid filter, includes: a nanofiber web that is made by stacking nanofibers that are obtained by air-electrospinning a fibrous polymer material and that have micropores; and a supporter that is inserted and combined onto one surface or in an inner portion of the nanofiber web.
Abstract:
Provided is a protective cover for a portable terminal, the protective cover including: a cover layer; an adhesive layer that is laminated on an inner surface of the cover layer; and a metal layer that is attached on the adhesive layer to perform an electromagnetic wave shielding function. The protective cover may shield electromagnetic waves generated in a portable terminal, perform an antibacterial function contaminating the portable terminal, and carrying out a DMB receiving antenna function when the metal layer is formed in a DMB reception antenna pattern.
Abstract:
Provides are a porous separator that prevents a short-circuit between two electrodes by using a porous nanofiber web where nanofibers have a core-shell structure, to thereby promote safety and thinning simultaneously. The porous separator includes: a porous nonwoven fabric playing a support role and having micropores; and a porous nanofiber web that is laminated on one side of the porous nonwoven fabric, and plays a role of an adhesive layer and an ion-containing layer when the porous nanofiber web is in close contact with an opposed electrode, wherein a portion of the porous nanofiber web is incorporated in a surface layer of the porous nonwoven fabric, to thus partially block pores of the porous nonwoven fabric and to thereby lower porosity of the porous nonwoven fabric. The porous nanofiber web has nanofibers obtained by spinning a mixture of a swellable polymer and a non-swellable polymer to have a core-shell structure.
Abstract:
Provided is a diaphragm for use in a speaker that is configured to include a nanoweb that is formed by electrospinning a polymer material and accumulating nanofibers, so as to have a plurality of pores through which air can pass. The diaphragm can be made thin, have excellent flexibility, have sufficient strength to endure sound pressure, and enhance sound quality of low pitched bands.
Abstract:
A heat radiation sheet including: a heat radiation layer that is formed in the form of a nano-web having a plurality of pores by electrospinning a spinning solution that is obtained by mixing a polymer material and a solvent, or the polymer material, a heat conductive material, and the solvent; and an adhesive layer that is laminated on one surface or both surfaces of the heat radiation layer, and that is formed in the form of the nano-web by electrospinning an adhesive material that is obtained by an adhesive, the heat conductive material, and the solvent.
Abstract:
A cytokine adsorption sheet comprises a nanofiber web formed by electrospinning a spinning solution prepared by mixing an adsorbent material capable of adsorbing cytokine and an electrospinnable polymer material. Thus, the dissolution of the adsorbent material by blood can be prevented.
Abstract:
A yarn including a plurality of twists formed by twisting single fiber strand or multiple fiber strands; and fiber grooves, which are spaces formed between the twists, to provide three-dimensional growth spaces and migration paths for cells. Accordingly, a cell proliferation rate and cell viability may be enhanced by creating microenvironments suitable for migration, proliferation and differentiation of cultured cells. In addition, cell clusters having more uniform shapes may be easily implemented by forming the proliferation spaces and migration paths for the cultured cells as similar as possible to each other in each scaffold. Further, the cells cultured thereby can be cultured in a suitable shape and structure to be applied to an in vitro experimental model or transplanted into the body of an animal, and can be widely applied in various products used in a cell culture or tissue engineering field.
Abstract:
A core structure is provided. The core structure according to an embodiment of the present invention is a core structure on which a coil is wound, and comprises: a magnetic body which is formed to have a ring shape and is made of a magnetic material; a first guide which is formed to have a ring shape so as to come into contact with the inner circumferential surface of the magnetic body and is made of an insulative material; and an insulating layer with which the magnetic body and the first guide are at least partially coated so as to insulate the magnetic body.
Abstract:
Provided is a nanofiber composite membrane for guided bone regeneration, which includes: spinning a spinning solution by an electrospinning method to produce nanofibers; accumulating the nanofibers, to prepare a certain thickness of a nanofiber web; and drying and thermally calendering the nanofiber web to sterilize the nanofiber web, wherein the spinning solution contains a biocompatible plasticizer to maintain physical properties, flexibility and elasticity of the membrane, by suppressing an increase in brittleness in a sterilization treatment.