Branch prediction entry with target line index calculated using relative position of second operation of two step branch operation in a line of instructions
    62.
    发明授权
    Branch prediction entry with target line index calculated using relative position of second operation of two step branch operation in a line of instructions 有权
    使用指令行中的两步分支操作的第二操作的相对位置计算具有目标行索引的分支预测条目

    公开(公告)号:US06247124B1

    公开(公告)日:2001-06-12

    申请号:US09363635

    申请日:1999-07-30

    Abstract: A computing system contains an apparatus having an instruction memory to store a plurality of lines of a plurality of instructions, and a branch memory to store a plurality of branch prediction entries, each branch prediction entry containing information for predicting whether a branch designated by a branch instruction stored in the instruction memory will be taken when the branch instruction is executed. Each branch prediction entry includes a branch target field for indicating a target address of a line containing a target instruction to be executed if the branch is taken, a destination field indicating where the target instruction is located within the line indicated by the branch target address, and a source field indicating where the branch instruction is located within the line corresponding to the target address. A counter stores an address value used for addressing the instruction memory, and an incrementing circuit increments the address value in the counter for sequentially addressing the lines in the instruction memory during normal sequential operation. A counter loading circuit loads the target address into the counter when the branch prediction entry predicts the branch designated by the branch instruction stored in the instruction memory will be taken when the branch instruction is executed, causing the line containing the target instruction to be fetched and entered into the pipeline immediately after the line containing the branch instruction. An invalidate circuit invalidates any instructions following the branch instruction in the line containing the branch instruction and prior to the target instruction in the line containing the target instruction.

    Abstract translation: 计算系统包括具有存储多条指令的多行的指令存储器的装置,以及存储多个分支预测条目的分支存储器,每个分支预测条目包含用于预测分支指定的分支 存储在指令存储器中的指令将在执行分支指令时进行。 每个分支预测条目包括用于指示包含要执行的目标指令的行的目标地址的分支目标字段,如果分支被采用,则指示目标指令位于由分支目标地址指示的行内的目的地字段, 以及指示分支指令在与目标地址对应的行内位于何处的源字段。 计数器存储用于寻址指令存储器的地址值,并且递增电路递增计数器中的地址值,以便在正常顺序操作期间顺序寻址指令存储器中的行。 当分支预测条目预测在执行分支指令时,将采用存储在指令存储器中的分支指令指定的分支,计数器加载电路将目标地址加载到计数器中,导致包含目标指令的行被取出, 在包含分支指令的行后立即进入管道。 无效电路使包含分支指令的行中的分支指令之后的指令和包含目标指令的行中的目标指令之前的任何指令无效。

    Silicon oxide-nitride-carbide thin-film with embedded nanocrystalline semiconductor particles
    63.
    发明授权
    Silicon oxide-nitride-carbide thin-film with embedded nanocrystalline semiconductor particles 有权
    具有嵌入式纳米晶半导体颗粒的氧化硅 - 氮化碳 - 碳化物薄膜

    公开(公告)号:US09222169B2

    公开(公告)日:2015-12-29

    申请号:US12467969

    申请日:2009-05-18

    Abstract: A solar call is provided along with a method for forming a semiconductor nanocrystalline silicon insulating thin-film with a tunable bandgap. The method provides a substrate and introduces a silicon (Si) source gas with at least one of the following source gases: germanium (Ge), oxygen, nitrogen, or carbon into a high density (HD) plasma-enhanced chemical vapor deposition (PECVD) process. A SiOxNyCz thin-film embedded with a nanocrystalline semiconductor material is deposited overlying the substrate, where x, y, z≧0, and the semiconductor material is Si, Ge, or a combination of Si and Ge. As a result, a bandgap is formed in the SiOxNyCz thin-film, in the range of about 1.9 to 3.0 electron volts (eV). Typically, the semiconductor nanoparticles have a size in a range of 1 to 20 nm.

    Abstract translation: 提供太阳能呼叫以及用于形成具有可调带隙的半导体纳米晶硅绝缘薄膜的方法。 该方法提供了一种衬底,并将硅(Si)源气体与以下源气体中的至少一种:锗(Ge),氧,氮或碳引入高密度(HD)等离子体增强化学气相沉积(PECVD) )过程。 嵌入了纳米晶体半导体材料的SiO x N y C z薄膜沉积在衬底上,其中x,y,z≥0,半导体材料是Si,Ge或Si和Ge的组合。 结果,在SiOxNyCz薄膜中形成的带隙在约1.9〜3.0电子伏特(eV)的范围内。 通常,半导体纳米颗粒的尺寸在1至20nm的范围内。

    System and Method for Pixelated Fluid Assay
    64.
    发明申请
    System and Method for Pixelated Fluid Assay 审中-公开
    像素流体测定的系统和方法

    公开(公告)号:US20120245049A1

    公开(公告)日:2012-09-27

    申请号:US13488501

    申请日:2012-06-05

    CPC classification number: C12Q1/6813 Y10S436/805

    Abstract: A method of performing a fluid-material assay employing a device including at least one active pixel having a sensor with an assay site functionalized for selected fluid-assay material. The method includes exposing the pixel's sensor assay site to such material, and in conjunction with such exposing, and employing the active nature of the pixel, remotely requesting from the pixel's sensor assay site an assay-result output report. The method further includes, in relation to the employing step, creating, relative to the sensor's assay site in the at least one pixel, a predetermined, pixel-specific electromagnetic field environment.

    Abstract translation: 使用包括至少一个具有传感器的活性像素的装置进行流体材料测定的方法,所述传感器具有用于所选流体测定材料功能化的测定位点。 该方法包括将像素的传感器测定位点暴露于这种材料,并结合这样的曝光,并采用像素的主动特性,从像素的传感器测定位点远程请求测定结果输出报告。 该方法还包括关于采用步骤,相对于至少一个像素中的传感器的测定位置产生预定的像素特定的电磁场环境。

    Method of forming a light emitting device with a nanocrystalline silicon embedded insulator film
    66.
    发明授权
    Method of forming a light emitting device with a nanocrystalline silicon embedded insulator film 有权
    用纳米晶硅嵌入绝缘膜形成发光器件的方法

    公开(公告)号:US07998884B2

    公开(公告)日:2011-08-16

    申请号:US12126430

    申请日:2008-05-23

    Abstract: A light emitting device using a silicon (Si) nanocrystalline Si insulating film is presented with an associated fabrication method. The method provides a doped semiconductor or metal bottom electrode. Using a high density plasma-enhanced chemical vapor deposition (HDPECVD) process, a Si insulator film is deposited overlying the semiconductor electrode, having a thickness in a range of 30 to 200 nanometers (nm). For example, the film may be SiOx, where X is less than 2, Si3Nx, where X is less than 4, or SiCx, where X is less than 1. The Si insulating film is annealed, and as a result, Si nanocrystals are formed in the film. Then, a transparent metal electrode is formed overlying the Si insulator film. An annealed Si nanocrystalline SiOx film has a turn-on voltage of less than 20 volts, as defined with respect to a surface emission power of greater than 0.03 watt per square meter.

    Abstract translation: 使用硅(Si)纳米晶体Si绝缘膜的发光器件具有相关的制造方法。 该方法提供掺杂半导体或金属底电极。 使用高密度等离子体增强化学气相沉积(HDPECVD)工艺,淀积厚度在30至200纳米(nm)范围内的半导体电极上的Si绝缘体膜。 例如,膜可以是SiO x,其中X小于2,Si 3 N x,其中X小于4,或SiC x,其​​中X小于1.Si绝缘膜退火,结果Si纳米晶体为 在电影中形成。 然后,形成覆盖Si绝缘膜的透明金属电极。 退火的Si纳米晶SiO x膜具有小于20伏特的导通电压,如关于大于0.03瓦/平方米的表面发射功率所限定的。

    Silicon Nanoparticle Embedded Insulating Film Photodetector
    67.
    发明申请
    Silicon Nanoparticle Embedded Insulating Film Photodetector 审中-公开
    硅纳米颗粒嵌入式绝缘膜光电检测器

    公开(公告)号:US20090294885A1

    公开(公告)日:2009-12-03

    申请号:US12129434

    申请日:2008-05-29

    Abstract: A photodetector is provided with a method for fabricating a semiconductor nanoparticle embedded Si insulating film for photo-detection applications. The method provides a bottom electrode and introduces a semiconductor precursor and hydrogen. A thin-film is deposited overlying the substrate, using a high density (HD) plasma-enhanced chemical vapor deposition (PECVD) process. As a result, a semiconductor nanoparticle embedded Si insulating film is formed, where the Si insulating film includes either N or C elements. For example, the Si insulating film may be a non-stoichiometric SiOXNY thin-film, where (X+Y 0), or SiCX, where X

    Abstract translation: 光电检测器具有用于制造用于光检测应用的半导体纳米颗粒嵌入的Si绝缘膜的方法。 该方法提供底电极并引入半导体前体和氢。 使用高密度(HD)等离子体增强化学气相沉积(PECVD)工艺将薄膜沉积在衬底上。 结果,形成半导体纳米颗粒嵌入的Si绝缘膜,其中Si绝缘膜包括N或C元素。 例如,Si绝缘膜可以是非化学计量的SiOXNY薄膜,其中(X + Y <2和Y> 0)或SiCX,其中X <1。 半导体纳米颗粒是Si或Ge。 在形成半导体纳米颗粒嵌入的Si绝缘膜之后,进行退火处理。

    Silicon Oxide-Nitride-Carbide with Embedded Nanocrystalline Semiconductor Particles
    68.
    发明申请
    Silicon Oxide-Nitride-Carbide with Embedded Nanocrystalline Semiconductor Particles 有权
    具有嵌入式纳米晶半导体颗粒的氧化硅 - 氮化物 - 碳化物

    公开(公告)号:US20090217968A1

    公开(公告)日:2009-09-03

    申请号:US12467969

    申请日:2009-05-18

    Abstract: A solar call is provided along with a method for forming a semiconductor nanocrystalline silicon insulating thin-film with a tunable bandgap. The method provides a substrate and introduces a silicon (Si) source gas with at least one of the following source gases: germanium (Ge), oxygen, nitrogen, or carbon into a high density (HD) plasma-enhanced chemical vapor deposition (PECVD) process. A SiOxNyCz thin-film embedded with a nanocrystalline semiconductor material is deposited overlying the substrate, where x, y, z≧0, and the semiconductor material is Si, Ge, or a combination of Si and Ge. As a result, a bandgap is formed in the SiOxNyCz thin-film, in the range of about 1.9 to 3.0 electron volts (eV). Typically, the semiconductor nanoparticles have a size in a range of 1 to 20 nm.

    Abstract translation: 提供太阳能呼叫以及用于形成具有可调带隙的半导体纳米晶硅绝缘薄膜的方法。 该方法提供了一种衬底,并将硅(Si)源气体与以下源气体中的至少一种:锗(Ge),氧,氮或碳引入高密度(HD)等离子体增强化学气相沉积(PECVD) )过程。 嵌入纳米晶体半导体材料的SiOxNyCz薄膜沉积在衬底上,其中x,y,z> = 0,半导体材料是Si,Ge或Si和Ge的组合。 结果,在SiOxNyCz薄膜中形成的带隙在约1.9〜3.0电子伏特(eV)的范围内。 通常,半导体纳米颗粒的尺寸在1至20nm的范围内。

    Fabrication of a Semiconductor Nanoparticle Embedded Insulating Film Luminescence Device
    70.
    发明申请
    Fabrication of a Semiconductor Nanoparticle Embedded Insulating Film Luminescence Device 失效
    半导体纳米颗粒嵌入式绝缘膜发光器件的制造

    公开(公告)号:US20090058266A1

    公开(公告)日:2009-03-05

    申请号:US12267698

    申请日:2008-11-10

    CPC classification number: C23C16/30 C23C16/5096 C23C16/56

    Abstract: A method is provided for fabricating a semiconductor nanoparticle embedded Si insulating film for short wavelength luminescence applications. The method provides a bottom electrode, and deposits a semiconductor nanoparticle embedded Si insulating film, including the element of N, O, or C, overlying the bottom electrode. After annealing, a semiconductor nanoparticle embedded Si insulating film has a peak photoluminescence (PL) at a wavelength in the range of 475 to 750 nanometers.

    Abstract translation: 提供一种用于制造用于短波长发光应用的半导体纳米颗粒嵌入式Si绝缘膜的方法。 该方法提供底部电极,并沉积包含覆盖底部电极的N,O或C元素的半导体纳米颗粒嵌入的Si绝缘膜。 在退火之后,半导体纳米颗粒嵌入的Si绝缘膜在475至750纳米的波长范围内具有峰值光致发光(PL)。

Patent Agency Ranking