Abstract:
The invention is a method for designing semiconductor light emitting devices such that the side surfaces (surfaces not parallel to the epitaxial layers) are formed at preferred angles relative to vertical (normal to the plane of the light-emitting active layer) to improve light extraction efficiency and increase total light output efficiency. Device designs are chosen to improve efficiency without resorting to excessive active area-yield loss due to shaping. As such, these designs are suitable for low-cost, high-volume manufacturing of semiconductor light-emitting devices with improved characteristics.
Abstract:
Light emitting devices having a vertical optical path, e.g. a vertical cavity surface emitting laser or a resonant cavity light emitting or detecting device, having high quality mirrors may be achieved using wafer bonding or metallic soldering techniques. The light emitting region interposes one or two reflector stacks containing dielectric distributed Bragg reflectors (DBRs). The dielectric DBRs may be deposited or attached to the light emitting device. A host substrate of GaP, GaAs, InP, or Si is attached to one of the dielectric DBRs. Electrical contacts are added to the light emitting device.
Abstract:
Light emitting diodes with highly reflective contacts and methods for fabricating them are described. In a first preferred embodiment of the present invention, LEDs with reflective contacts are formed using a laser to create small alloyed dots in a highly reflective metal evaporated on the top and bottom surface of the LED chip. Using this technique, most of the bottom surface remains highly reflective, and only those portions of the bottom surface where the laser struck become absorbing. Typically, only 1% of the bottom surface is formed into contacts, leaving 99% of the bottom surface to serve as a reflecting surface. The 1% of the surface, however, provides an adequate low resistance ohmic contact. LEDs fabricated with this technique allow photons to bounce off the rear surface more than 20 times before there is a 50% chance of absorption. In a second embodiment of the present invention, an application of compound semiconductor wafer bonding techniques permits the fabrication of LEDs with a plurality of these small, micro-alloyed contacts without the use of a laser.
Abstract:
Consistent with the present disclosure, one or more spare Widely Tunable Lasers (WTLs) are integrated on a PIC. In the event that a channel, including, for example, a laser, a modulator and a semiconductor optical amplifier in a transmitter or Tx PIC, or a laser, optical hybrid, and photodiodes, for example, in a receiver PIC (Rx PIC), includes one or more defective devices, a spare channel is selected that includes a widely tunable laser (WTL) which may be tuned to the wavelength associated with any of the channels on the PIC. Accordingly, the spare channel replaces the defective channel or the lowest performing channel and outputs modulated optical signals at the wavelength associated with the defective channel. Thus, even though a defective channel may be present, a die consistent with the present disclosure may still output or receive the desired channels because the spare channel replaces the defective channel. As a result, yields and minimum performance may improve compared to PICs that do not have a spare channel and manufacturing costs may be reduced. Alternatively, connections, such as fiber connections, may be made only to the operation or best performing channels.
Abstract:
A laser source or a plurality of laser sources in a photonic integrated circuit (PIC) are provided with an electrical contact that is either segmented or is connected to a series of vernier resistor segments for supply of current to operate the laser source. In either case, at least one segment of the laser contact or at least one vernier resistor segment can be trimmed in order to vary the amount of current supplied to the laser source resulting in a change to its current density and, thus, a change in its operational wavelength while maintaining the current supplied to the laser source constant.
Abstract:
A device may include a number of optical waveguides, each of which being spaced from one another. The optical waveguides may each include at least one curved section and widths of the curved sections of the optical waveguides may be selected to reduce polarization conversion of light traversing the birefringent optical waveguides.
Abstract:
A semiconductor optical amplifier module may include a beam splitter to split an optical signal into two polarization optical signals including a first polarization optical signal with a Transverse Magnetic (TM) polarization provided along a first path of two paths, and a second polarization optical signal with a Transverse Electric (TE) polarization provided along a second path of the two paths; a first rotator to rotate the TM polarization of the first polarization optical signal to TE polarization; a first semiconductor optical amplifier to amplify the rotated first polarization optical signal to output a first resultant optical signal; a second semiconductor optical amplifier to amplify the second polarization optical signal; and a second rotator to rotate the polarization of the amplified second polarization optical signal to output a second resultant optical signal; and a beam combiner to combine the first resultant optical signal and the second resultant optical signal.
Abstract:
Photonic integrated circuits (PICs) may include transmit and receive PICs that include individually tunable optical elements. In one implementation, a device may include a number of optical elements that form a number of optical channels. Tuners may be used to modify a property associated with the at least one of the optical elements where the modified properties of the optical elements adjust a frequency grid of the optical channels.
Abstract:
Photonic integrated circuits (PICs) may include transmit and receive PICs that include individually tunable optical elements. In one implementation, a device may include a number of optical elements that form a number of optical channels. Tuners may be used to modify a property associated with the at least one of the optical elements where the modified properties of the optical elements adjust a frequency grid of the optical channels.
Abstract:
A coolerless photonic integrated circuit (PIC), such as a semiconductor electro-absorption modulator/laser (EML) or a coolerless optical transmitter photonic integrated circuit (TxPIC), may be operated over a wide temperature range at temperatures higher then room temperature without the need for ambient cooling or hermetic packaging. Since there is large scale integration of N optical transmission signal WDM channels on a TxPIC chip, a new DWDM system approach with novel sensing schemes and adaptive algorithms provides intelligent control of the PIC to optimize its performance and to allow optical transmitter and receiver modules in DWDM systems to operate uncooled. Moreover, the wavelength grid of the on-chip channel laser sources may thermally float within a WDM wavelength band where the individual emission wavelengths of the laser sources are not fixed to wavelength peaks along a standardized wavelength grid but rather may move about with changes in ambient temperature. However, control is maintained such that the channel spectral spacing between channels across multiple signal channels, whether such spacing is periodic or aperiodic, between adjacent laser sources in the thermally floating wavelength grid are maintained in a fixed relationship. Means are then provided at an optical receiver to discover and lock onto floating wavelength grid of transmitted WDM signals and thereafter demultiplex the transmitted WDM signals for OE conversion.