Abstract:
A magnetic disk device includes a magnetic head assembly, which includes magnetic heads, support plates, and a flexible wiring substrate that are integrally formed. The magnetic heads include heating elements for making head element parts protrude toward magnetic disks by thermal expansion, the support plate supports the magnetic head, the flexible wiring substrate is provided along the support plate and electrically connects the magnetic heads to a circuit system, and the magnetic head assembly and the magnetic disks are assembled in a case. The magnetic disk device includes a sensor and a floating distance control circuit. The sensor detects at least one of atmospheric pressure, temperature, and humidity in the case. The floating distance control circuit increases or decreases current supplied to the heating element on the basis of the output of the sensor and controls the floating distance of the magnetic head so that the floating distance is constant. While being received in a package made of high temperature co-fired ceramic, the sensor is mounted on a circuit mounting surface of the flexible wiring substrate in the case.
Abstract:
The present invention relates to a method of manufacturing a semiconductor device including (1) forming a laminated structure on a major surface of a semiconductor substrate, the laminated structure comprising at least a first metal layer that forms a Schottky junction with the semiconductor substrate, a second metal layer primarily composed of aluminum, and a third metal layer primarily composed of molybdenum or titanium, (2) patterning the laminated structure into a predetermined configuration, (3) forming a solder bonding metal layer comprising at least nickel, ion or cobalt on the major surface of the semiconductor substrate having the patterned laminated structure formed thereon, (4) patterning the solder bonding metal layer into a pattern configuration identical to that of the laminated structure, (5) cutting the semiconductor substrate on which the laminated structure and the solder bonding metal layer are patterned to form a plurality of semiconductor chips, and (6) bonding the semiconductor chip to a first frame using at least one solder layer formed on the solder bonding metal layer on the major surface of the semiconductor substrate, and bonding a rear face of the semiconductor chip to a second frame.
Abstract:
Embodiments of the present disclosure are directed to a package having pressure sensor including a first substrate having a fixed electrode bonded to a second substrate having a movable electrode disposed at a predetermined interval from the fixed electrode, a support substrate with an opening for storing the second substrate, and a resin layer for fixing the pressure sensor and the support substrate. The pressure sensor may be packaged on the support substrate via the first substrate and a bonding member in a state where the second substrate is fit within the opening. The package for the pressure sensor may be sufficiently thin to be employed for the use on a minimum area.
Abstract:
A package is mainly formed of a package body having a storage area for storing a pressure sensor, a capacity type pressure sensor stored in the storage area of the package body, a lid seals the package body in which the pressure sensor is stored, an adhesive agent for fixing the pressure sensor to the package body, and a bonding wire for electrically coupling a bonding pad of the pressure sensor and a conductive portion of the package body. An adhesive area of the package body and the pressure sensor is set to the area other than a projection area of the diaphragm of the pressure sensor on a mount bottom surface. This makes it possible to provide the package for the pressure sensor capable of detecting the pressure with high sensitivity although the gap between the substrate and the diaphragm has the value with the magnitude of several μms.
Abstract:
A magnetic head is provided that is formed by fixedly bonding a slider having a thin-film magnetic element on a flexure formed of metallic material which constitutes a gimbal suspension. The slider includes electrodes conducted to the thin-film magnetic head on an end surface thereof on a trailing side which is orthogonal to the recording-medium-opposed surface. The flexure has independent spacer projections. The slider and the flexure are bonded by an adhesive agent applied to bonding areas on end surfaces of a pair of spacer projections positioned in the vicinity of the end surface on the trailing side out of the spacer projections.
Abstract:
A head gimbal assembly has a gimbal suspension that includes a metal flexure bonded to a slider having a magnetic head element. This head gimbal assembly prevents damage from electrostatic discharge more efficiently. In the head gimbal assembly, a region of an oxide film on a slider-bonding surface of the flexure is completely or incompletely removed to form a film-removed region, and conductive adhesive resin is disposed between the film-removed region and the slider.
Abstract:
A semiconductor device has a semiconductor device chip with upper and lower terminal electrodes, and upper and lower frames bonded to the upper and lower terminal electrodes, respectively, with solder material, wherein the semiconductor device chip includes: a semiconductor layer of a first conductivity type; a diffusion layer of a second conductivity type, which is selectively formed in the semiconductor layer; a plurality of guard-ring layers of the second conductivity type, which are formed outside of the diffusion layer in the semiconductor layer; an insulating film formed on the semiconductor layer; and a field plate formed of a poly-crystalline silicon film embedded in the insulating film.
Abstract:
A color cathode ray tube has stress-absorbing hole patterns in skirt portions of its color selection electrode. Each of the stress-absorbing hole patterns is composed of a plurality of columns of rectangular through holes, and the columns are arranged in a lengthwise direction of the skirt portions. Each of the plurality of columns of rectangular through holes is composed of rectangular through holes arranged in a widthwise direction of the skirt portions. The relationships in shape of the rectangular through holes among outermost columns, columns next to the outermost columns, and remaining columns is optimized in the stress-absorbing hole patterns.
Abstract:
A semiconductor device comprises: a semiconductor chip; a first frame; a solder layer which bonds the solder bonding metal layer of the semiconductor chip and the first frame; and a second frame bonded to the rear face of the semiconductor chip. The semiconductor chip includes: a semiconductor substrate; a first metal layer provided on a major surface of the semiconductor substrate and forming a Schottky junction with the semiconductor substrate; a second metal layer provided on the first metal layer and primarily composed of aluminum; a third metal layer provided on the second metal layer and primarily composed of molybdenum or titanium; and a solder bonding metal layer provided on the third metal layer and including at least a forth metal layer which is primarily composed of nickel, ion or cobalt.
Abstract:
The present invention concerns a data-storing device, which is coupled to a personal computer through an interface and can enlarge a number of and a kind of devices connectable to the personal computer. The data-storing device includes an interfacing circuit that includes a data communication path through which the data can be bilaterally communicated between the device and an external device, which is coupled to the device with an interface cable, and a power-supplying path through which a power current can be bilaterally supplied between the device and the external device, wherein the interface cable also includes the data communication path and the power-supplying path; a data-storing unit to store the data sent from the interfacing circuit; and a plurality of interface connecting ports serving as input/output terminals of the interfacing circuit, wherein the interface cable can be connected to one of the interface connecting ports.