Deposition of SiN
    63.
    发明授权
    Deposition of SiN 有权
    沉积SiN

    公开(公告)号:US09576792B2

    公开(公告)日:2017-02-21

    申请号:US14855261

    申请日:2015-09-15

    Abstract: Methods and precursors for forming silicon nitride films are provided. In some embodiments, silicon nitride can be deposited by atomic layer deposition (ALD), such as plasma enhanced ALD. In some embodiments, deposited silicon nitride can be treated with a plasma treatment. The plasma treatment can be a nitrogen plasma treatment. In some embodiments the silicon precursors for depositing the silicon nitride comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%). In some embodiments, a method for depositing silicon nitride films comprises a multi-step plasma treatment.

    Abstract translation: 提供了形成氮化硅膜的方法和前体。 在一些实施例中,氮化硅可以通过原子层沉积(ALD)沉积,例如等离子体增强的ALD。 在一些实施例中,沉积的氮化硅可以用等离子体处理。 等离子体处理可以是氮等离子体处理。 在一些实施方案中,用于沉积氮化硅的硅前体包含碘配体。 当沉积到诸如FinFETS或其它类型的多栅极FET的三维结构上时,氮化硅膜可以具有相对均匀的垂直和水平部分的蚀刻速率。 在一些实施方案中,本公开的各种氮化硅膜具有小于具有稀释HF(0.5%)的热氧化物去除速率的一半的蚀刻速率。 在一些实施例中,沉积氮化硅膜的方法包括多步等离子体处理。

    Deposition of boron and carbon containing materials
    64.
    发明授权
    Deposition of boron and carbon containing materials 有权
    沉积含硼和碳的材料

    公开(公告)号:US09543140B2

    公开(公告)日:2017-01-10

    申请号:US14515341

    申请日:2014-10-15

    Inventor: Viljami Pore

    Abstract: Methods of depositing boron and carbon containing films are provided. In some embodiments, methods of depositing B,C films with desirable properties, such as conformality and etch rate, are provided. One or more boron and/or carbon containing precursors can be decomposed on a substrate at a temperature of less than about 400° C. In some embodiments methods of depositing silicon nitride films comprising B and C are provided. A silicon nitride film can be deposited by a deposition process including an ALD cycle that forms SiN and a CVD cycle that contributes B and C to the growing film.

    Abstract translation: 提供了沉积硼和碳的膜的方法。 在一些实施例中,提供了沉积具有所需性质(诸如保形性和蚀刻速率)的B,C膜的方法。 一种或多种含硼和/或碳的前体可以在小于约400℃的温度下在基材上分解。在一些实施方案中,提供了沉积包含B和C的氮化硅膜的方法。 可以通过包括形成SiN的ALD循环和对生长膜贡献B和C的CVD循环的沉积工艺来沉积氮化硅膜。

    Methods for increasing growth rate during atomic layer deposition of thin films
    65.
    发明授权
    Methods for increasing growth rate during atomic layer deposition of thin films 有权
    在薄膜原子层沉积过程中增加生长速率的方法

    公开(公告)号:US09428842B2

    公开(公告)日:2016-08-30

    申请号:US13721136

    申请日:2012-12-20

    Inventor: Viljami Pore

    Abstract: The present invention generally related to adding Indium precursors to deposition processes for thin films. Indium precursors are added in order to increase the growth rate per cycle of the deposition process. A plurality of deposition processes are disclosed herein which comprising a plurality of deposition cycles and providing an In-precursor pulse before at least one reactant pulse in at least one deposition cycle. The In-precursor can be added for increasing the average growth rate per cycle by at least 50% and in many examples above 500% compared to the growth rate of a similar deposition process without providing an In-precursor. Examples disclosed herein include the deposition of thin films comprising pnictides or chalcogenides, made by atomic layer deposition.

    Abstract translation: 本发明一般涉及将铟前体添加到薄膜沉积工艺中。 添加铟前体以增加沉积过程每循环的生长速率。 本文公开了多个沉积工艺,其包括多个沉积循环,并且在至少一个沉积循环中的至少一个反应物脉冲之前提供前驱前脉冲。 可以加入前体,以使得每个循环的平均生长速率增加至少50%,并且在许多实施例中,与不提供前体前体的相似沉积方法的生长速率相比,增加500%以上。 本文公开的实例包括沉积由原子层沉积制成的pnictides或硫族化物的薄膜。

    METHODS FOR INCREASING GROWTH RATE OF THIN FILMS
    67.
    发明申请
    METHODS FOR INCREASING GROWTH RATE OF THIN FILMS 有权
    增加薄膜生长速率的方法

    公开(公告)号:US20140174342A1

    公开(公告)日:2014-06-26

    申请号:US13721136

    申请日:2012-12-20

    Inventor: Viljami Pore

    Abstract: The present invention generally related to adding Indium precursors to deposition processes for thin films. Indium precursors are added in order to increase the growth rate per cycle of the deposition process. A plurality of deposition processes are disclosed herein which comprising a plurality of deposition cycles and providing an In-precursor pulse before at least one reactant pulse in at least one deposition cycle. The In-precursor can be added for increasing the average growth rate per cycle by at least 50% and in many examples above 500% compared to the growth rate of a similar deposition process without providing an In-precursor. Examples disclosed herein include the deposition of thin films comprising pnictides or chalcogenides, made by atomic layer deposition.

    Abstract translation: 本发明一般涉及将铟前体添加到薄膜沉积工艺中。 添加铟前体以增加沉积过程每循环的生长速率。 本文公开了多个沉积工艺,其包括多个沉积循环,并且在至少一个沉积循环中的至少一个反应物脉冲之前提供前驱前脉冲。 可以加入前体,以使得每个循环的平均生长速率增加至少50%,并且在许多实施例中,与不提供前体前体的相似沉积方法的生长速率相比,增加500%以上。 本文公开的实例包括沉积由原子层沉积制成的pnictides或硫族化物的薄膜。

    Gapfill methods and processing assemblies
    69.
    发明公开

    公开(公告)号:US20240117494A1

    公开(公告)日:2024-04-11

    申请号:US18367480

    申请日:2023-09-13

    CPC classification number: C23C16/513 C23C16/45519 C23C16/515

    Abstract: The disclosure relates to methods of filling gaps in semiconductor substrates. A method of filling a gap is disclosed. The method including providing a substrate having a gap in a reaction chamber, providing a first precursor including silicon and carbon into the reaction chamber in a vapor phase, wherein the first precursor includes at least one unsaturated carbon-carbon bond and at least one atom selected from oxygen and nitrogen. The method further includes providing a first plasma into the reaction chamber to polymerize the first precursor for forming a gap filling material, thereby at least partially filling the gap with the gap filling material. In some embodiments, the at least one unsaturated bond is a double bond.

Patent Agency Ranking