摘要:
A NAND memory array has a first dielectric layer formed on a first portion of a semiconductor substrate and a second dielectric layer formed on a second portion of the semiconductor substrate and adjoining the first dielectric layer. The first dielectric layer is thicker than the second dielectric layer. A first gate stack is formed on the first dielectric layer to form a drain select gate. A string of second gate stacks is formed on the second dielectric layer to form a NAND string of floating-gate memory cells. A first end of the NAND string is coupled in series with the drain select gate. A third gate stack is formed on the second dielectric layer to form a source select gate. A second end of the NAND string is coupled in series with the source select gate.
摘要:
This invention includes methods of forming capacitors. In one implementation, a first capacitor electrode material is formed over a substrate. The first capacitor electrode material is exposed to a nitrogen comprising atmosphere effective to form a dielectric silicon and nitrogen comprising material on the first capacitor electrode material. The dielectric silicon and nitrogen comprising material is exposed to an aqueous fluid comprising a base and an oxidizer. The aqueous fluid has a pH greater than 7.0. After the exposing to the aqueous fluid, an aluminum oxide comprising capacitor dielectric material is deposited over the first capacitor electrode material. A second capacitor electrode material is formed over the aluminum oxide comprising capacitor dielectric material. Other aspects and implementations are contemplated.
摘要:
The invention includes methods of forming films over substrates. A substrate is provided within a reaction chamber, and a mixture is also provided within the chamber. The mixture comprises a precursor of a desired material within a supercritical fluid. The precursor is relatively reactive under one set of conditions and is relatively non-reactive under another set of conditions. The precursor and supercritical fluid mixture is initially provided in the chamber under the conditions at which the precursor is relatively non-reactive. Subsequently, and while maintaining the supercritical state of the supercritical fluid, the conditions within the reaction chamber are changed to the conditions under which the precursor is relatively reactive. The precursor reacts to form the desired material, and at least some of the desired material forms a film on the substrate.
摘要:
The invention includes methods of forming particle-containing materials, and also includes semiconductor constructions comprising particle-containing materials. One aspect of the invention includes a method in which a first monolayer is formed across at least a portion of a semiconductor substrate, particles are adhered to the first monolayer, and a second monolayer is formed over the particles. Another aspect of the invention includes a construction containing a semiconductor substrate and a particle-impregnated conductive material over at least a portion of the semiconductor substrate. The particle-impregnated conductive material can include tungsten-containing particles within a layer which includes tantalum or tungsten.
摘要:
The invention includes an atomic layer deposition method of forming a layer of a deposited composition on a substrate. The method includes positioning a semiconductor substrate within an atomic layer deposition chamber. On the substrate, an intermediate composition monolayer is formed, followed by a desired deposited composition from reaction with the intermediate composition, collectively from flowing multiple different composition deposition precursors to the substrate within the deposition chamber. A material adheres to a chamber internal component surface from such sequentially forming. After such sequentially forming, a reactive gas flows to the chamber which is different in composition from the multiple different deposition precursors and which is effective to react with such adhering material. After the reactive gas flowing, such sequentially forming is repeated. Further implementations are contemplated.
摘要:
The invention includes an atomic layer deposition method of forming a layer of a deposited composition on a substrate. The method includes positioning a semiconductor substrate within an atomic layer deposition chamber. On the substrate, an intermediate composition monolayer is formed, followed by a desired deposited composition from reaction with the intermediate composition, collectively from flowing multiple different composition deposition precursors to the substrate within the deposition chamber. A material adheres to a chamber internal component surface from such sequentially forming. After such sequentially forming, a reactive gas flows to the chamber which is different in composition from the multiple different deposition precursors and which is effective to react with such adhering material. After the reactive gas flowing, such sequentially forming is repeated. Further implementations are contemplated.
摘要:
This invention includes methods of depositing a silicon dioxide comprising layer in the fabrication of integrated circuitry, and to methods of forming trench isolation in the fabrication of integrated circuitry. In one implementation, a method of depositing a silicon dioxide comprising layer in the fabrication of integrated circuitry includes flowing an aluminum containing organic precursor to a chamber containing a semiconductor substrate effective to deposit an aluminum comprising layer over the substrate. An alkoxysilanol is flowed to the substrate comprising the aluminum comprising layer within the chamber effective to deposit a silicon dioxide comprising layer over the substrate. At least one halogen is provided within the chamber during at least one of the aluminum containing organic precursor flowing and the alkoxysilanol flowing under conditions effective to reduce rate of the deposit of the silicon dioxide comprising layer over the substrate than would otherwise occur under identical conditions but for providing the halogen. Other implementations are contemplated.
摘要:
Methods for forming dielectric layers, and structures and devices resulting from such methods, and systems that incorporate the devices are provided. The invention provides an aluminum oxide/silicon oxide laminate film formed by sequentially exposing a substrate to an organoaluminum catalyst to form a monolayer over the surface, remote plasmas of oxygen and nitrogen to convert the organoaluminum layer to a porous aluminum oxide layer, and a silanol precursor to form a thick layer of silicon dioxide over the porous oxide layer. The process provides an increased rate of deposition of the silicon dioxide, with each cycle producing a thick layer of silicon dioxide of about 120 Å over the layer of porous aluminum oxide.
摘要:
NAND memory arrays and methods are provided. A plurality of first gate stacks is formed on a first dielectric layer that is formed on a substrate of a NAND memory array. The first dielectric layer and the plurality of first gate stacks formed thereon form a NAND string of memory cells of the memory array. A second gate stack is formed on a second dielectric layer that is formed on the substrate adjacent the first dielectric layer. The second dielectric layer with the second gate stack formed thereon forms a drain select gate adjacent an end of the NAND string. The second dielectric layer is thicker than the first dielectric layer.
摘要:
The invention includes methods of forming conductive metal suicides by reaction of metal with silicon. In one implementation, such a method includes providing a semiconductor substrate comprising an exposed elemental silicon containing surface. At least one of a crystalline form TiN, WN, elemental form W, or SiC comprising layer is deposited onto the exposed elemental silicon containing surface to a thickness no greater than 50 Angstroms. Such layer is exposed to plasma and a conductive reaction layer including at least one of an elemental metal or metal rich silicide is deposited onto the plasma exposed layer. At least one of metal of the conductive reaction layer or elemental silicon of the substrate is diffused along columnar grain boundaries of the crystalline form layer effective to cause a reaction of metal of the conductive reaction layer with elemental silicon of the substrate to form a conductive metal silicide comprising contact region electrically connecting the conductive reaction layer with the substrate. Other aspects and implementations are contemplated.