Abstract:
Embodiments relate to a semiconductor device, a semiconductor wafer structure, and a method for manufacturing or forming a semiconductor wafer structure. The semiconductor device includes a semiconductor substrate with a first region having a first conductivity type and a second region having a second conductivity type. The semiconductor device further includes an oxide structure with interrupted areas and a metal layer structure being in contact with the second region at least at the interrupted areas of the oxide.
Abstract:
A device includes a semiconductor material having a first main surface, an opposite surface opposite to the first main surface and a side surface extending from the first main surface to the opposite surface. The device further includes a first electrical contact element arranged on the first main surface of the semiconductor material and a glass material. The glass material includes a second main surface wherein the glass material contacts the side surface of the semiconductor material and wherein the first main surface of the semiconductor material and the second main surface of the glass material are arranged in a common plane.
Abstract:
Some embodiments discussed relates to an apparatus for holding a substrate, comprising a body with a surface for a semiconductor wafer to rest on, with the surface having a first surface area on which a first area of the semiconductor wafer can rest, and a second surface area on which a second area of the semiconductor wafer can rest, wherein the second surface area protrudes with respect to the first surface area.
Abstract:
A method of manufacturing a semiconductor device includes: providing a silicon carbide substrate that includes device regions and a grid-shaped kerf region laterally separating the device regions; forming a mold structure on a backside surface of the grid-shaped kerf region; forming backside metal structures on a backside surface of the device regions; and separating the device regions, wherein parts of the mold structure form frame structures laterally surrounding the backside metal structures.
Abstract:
A method of forming a semiconductor device includes: forming a first semiconductor layer on a semiconductor substrate, the first semiconductor layer being of the same dopant type as the semiconductor substrate, the first semiconductor layer having a higher dopant concentration than the semiconductor substrate; increasing the porosity of the first semiconductor layer; first annealing the first semiconductor layer in an atmosphere including an inert gas; forming a second semiconductor layer on the first semiconductor layer; and separating the second semiconductor layer from the semiconductor substrate by splitting within the first semiconductor layer. Additional methods of forming a semiconductor device are described.
Abstract:
A method for processing a semiconductor wafer is proposed. The method may include reducing a thickness of the semiconductor wafer. A carrier structure is placed on a first side of the semiconductor wafer, e.g. before or after reducing the thickness of the semiconductor wafer. The method further includes providing a support structure on a second side of the semiconductor wafer opposite to the first side, e.g. after reducing the thickness of the semiconductor wafer. Methods for welding a support structure onto a semiconductor wafer are proposed. Further, semiconductor composite structures with support structures welded onto a semiconductor wafer are proposed.
Abstract:
A method of manufacturing a semiconductor device is provided. The method includes forming a carbon structure on a handle substrate at a first surface of the handle substrate. The method further includes attaching a first surface of a semiconductor substrate to the first surface of the handle substrate. The method further includes processing the semiconductor substrate and performing a separation process to separate the handle substrate from the semiconductor substrate. The separation process comprises modifying the carbon structure.
Abstract:
A method for processing a semiconductor wafer is proposed. The method may include: reducing a thickness of the semiconductor wafer; before or after reducing the thickness of the semiconductor wafer, placing a carrier structure at a first side of the semiconductor wafer; and after reducing the thickness of the semiconductor wafer, providing a support structure at a second side of the semiconductor wafer opposite to the first side. Methods for welding a support structure onto a semiconductor wafer are proposed. Further, semiconductor composite structures with support structures welded onto a semiconductor wafer are proposed.
Abstract:
A method of splitting a semiconductor wafer includes: forming one or more epitaxial layers on the semiconductor wafer; forming a plurality of device structures in the one or more epitaxial layers; forming a metallization layer and/or a passivation layer over the plurality of device structures; attaching a carrier to the semiconductor wafer with the one or more epitaxial layers, the carrier protecting the plurality of device structures and mechanically stabilizing the semiconductor wafer; forming a separation region within the semiconductor wafer, the separation region having at least one altered physical property which increases thermo-mechanical stress within the separation region relative to the remainder of the semiconductor wafer; and applying an external force to the semiconductor wafer such that at least one crack propagates along the separation region and the semiconductor wafer splits into two separate pieces, one of the pieces retaining the plurality of device structures.
Abstract:
In various embodiments, a method for processing a wafer is provided. The method includes forming a layer stack, including a support layer and a useful layer and a sacrificial region between them, said sacrificial region having, vis-à-vis a processing fluid, a lower mechanical and/or chemical resistance than the support layer and than the useful layer. The support layer has a depression, which exposes the sacrificial region. The method further includes forming at least one channel in the exposed sacrificial region by means of the processing fluid. The channel connects the depression to an exterior of the layer stack.