Abstract:
A method for fabricating a backside device contact using a silicon-on-insulator substrate that includes a device layer, a buried insulator layer, and a handle wafer, includes forming a trench in the device layer. The trench is filled with a contact plug. The backside device contact includes the contact plug. After the trench is filled with the contact plug, the handle wafer is removed to reveal the buried insulator layer. The buried insulator layer is partially removed to expose the trench containing the contact plug. A final substrate is connected to the buried insulator layer such that the contact plug contacts metallization of the final substrate. A device structure is formed using the device layer.
Abstract:
A device structure is formed using a silicon-on-insulator substrate. The device structure includes a first switch and a second switch that are formed within a device layer of the silicon-on-insulator substrate and between a buried insulator layer of the silicon on-insulator substrate and a dielectric layer disposed above and coupled to the device layer. An electrically-conducting connection is located in a first trench extending from the device layer through the buried insulator layer to a trap-rich layer such that the electrically-conducting connection is coupled with a substrate.
Abstract:
A method for fabricating a backside device contact using a silicon-on-insulator substrate that includes a device layer, a buried insulator layer, and a handle wafer, includes forming a trench in the device layer. A trench is formed in the device layer. A sacrificial plug is formed in the trench. The handle wafer is removed to reveal the buried insulator layer. The buried insulator layer is partially removed to expose the sacrificial plug at a bottom of the trench. The sacrificial plug is removed. Backside processing of the buried insulator layer is performed. The trench is filled with a conductor to form a contact plug. A final substrate is connected to the buried insulator layer such that the contact plug contacts metallization of the final substrate.
Abstract:
A method for fabricating a backside device contact using a silicon-on-insulator substrate that includes a device layer, a buried insulator layer, and a handle wafer, includes forming a trench in the device layer. The trench is filled with a contact plug. The backside device contact includes the contact plug. After the trench is filled with the contact plug, the handle wafer is removed to reveal the buried insulator layer. The buried insulator layer is partially removed to expose the trench containing the contact plug. A final substrate is connected to the buried insulator layer such that the contact plug contacts metallization of the final substrate. A device structure is formed using the device layer.
Abstract:
Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed on a piezoelectric substrate. The method further includes forming a fixed electrode with a plurality of fingers on the piezoelectric substrate. The method further includes forming a moveable electrode with a plurality of fingers over the piezoelectric substrate. The method further includes forming actuators aligned with one or more of the plurality of fingers of the moveable electrode.
Abstract:
Photodiode structures and methods of manufacture are disclosed. The method includes forming a waveguide structure in a dielectric layer. The method further includes forming a Ge material in proximity to the waveguide structure in a back end of the line (BEOL) metal layer. The method further includes crystallizing the Ge material into a crystalline Ge structure by a low temperature annealing process with a metal layer in contact with the Ge material.
Abstract:
A device structure is formed using a silicon-on-insulator substrate. The device structure includes a first switch and a second switch that are formed using a device layer of the silicon-on-insulator substrate. A trap-rich layer is between a substrate and a buried insulator layer of the silicon on-insulator substrate. An electrically-conducting connection is located in a trench extending from the device layer through the buried insulator layer to the trap-rich layer such that the electrically-conducting connection is coupled with the substrate. The electrically-conducting connection at least partially comprised of trap-rich material.
Abstract:
Device structures and fabrication methods for a backside contact to a final substrate An electrically-conducting connection is formed that extends through a device layer of a silicon-on-insulator substrate and partially through a buried insulator layer of the silicon-on-insulator substrate. After the electrically-conducting connection is formed, a handle wafer of the silicon-on-insulator substrate is removed. After the handle wafer is removed, the buried insulator layer is partially removed to expose the electrically-conducting connection. After the buried insulator layer is partially removed, a final substrate is coupled to the buried insulator layer such that the electrically-conducting connection is coupled with the final substrate.
Abstract:
An integrated recessed thin body field effect transistor (FET) and methods of manufacture are disclosed. The method includes recessing a portion of a semiconductor material. The method further includes forming at least one gate structure within the recessed portion of the semiconductor material.
Abstract:
Disclosed are guard ring structures with an electrically insulated gap in a substrate to reduce or eliminate device coupling of integrated circuit chips, methods of manufacture and design structures. The method includes forming a guard ring structure comprising a plurality of metal layers within dielectric layers. The method further includes forming diffusion regions to electrically insulate a gap in a substrate formed by segmented portions of the guard ring structure.