Abstract:
The present invention relates to a method for forming a via in a substrate. The method includes the following steps: (a) providing a substrate; (b) forming a groove that has a side wall and a bottom wall on a first surface of the substrate; (c) forming a first conductive metal on the side wall and the bottom wall of the groove so as to form a central groove; (d) forming a center insulating material in the central groove; (e) forming an annular groove that surrounds the first conductive metal on the first surface of the substrate; (f) forming a first insulating material in the annular groove; and (g) removing part of the substrate to expose the first conductive metal, the center insulating material and the first insulating material.
Abstract:
The present invention relates to a method for forming vias in a semiconductor substrate, including the following steps: (a) providing a semiconductor substrate having a first surface and a second surface; (b) forming a groove on the semiconductor substrate; (c) filling the groove with a conductive metal; (d) removing part of the semiconductor substrate which surrounds the conductive metal, wherein the conductive metal is maintained so as to form an accommodating space between the conductive metal and the semiconductor substrate; and (e) forming an insulating material in the accommodating space. In this way, thicker insulating material can be formed in the accommodating space, and the thickness of the insulating material in the accommodating space is even.
Abstract:
The present invention relates to a semiconductor device and a semiconductor package having the same. The semiconductor device includes a conductive element. The conductive element is disposed on a protruded conductive via and liner, and covers a sidewall of the liner. Whereby, the conductive element can protect the protruded conductive via and liner from being damaged. Further, the size of the conductive element is large, thus it is easy to perform a probe test process.
Abstract:
The present invention relates to a semiconductor device with a plurality of mark through substrate vias, including a semiconductor substrate, a plurality of original through substrate vias and a plurality of mark through substrate vias. The original through substrate vias and the mark through substrate vias are disposed in the semiconductor substrate and protrude from the backside surface of the semiconductor substrate. The mark through substrate vias are added at a specific position and/or in a specific pattern and serve as a fiducial mark, which facilitates identifying the position and direction on the backside surface. Thus, the redistribution layer (RBL) or the special equipment for achieving the backside alignment (BSA) is not necessary.
Abstract:
A semiconductor package structure including a substrate, a first chip, a second chip, and an interposer is provided. The substrate has a carrying surface and an opposite bottom surface. The first chip disposed on the carrying surface has a first surface and an opposite second surface. The second surface faces the substrate. The first chip has a plurality of through silicon vias (TSVs) and a plurality of first pads and second pads on the first surface. The first pads are electrically connected to the corresponding TSVs. The TSVs are electrically connected to the substrate. The second chip disposed above the first chip exposes a portion of the first surface. The second chip is electrically connected to the corresponding TSVs. The interposer is disposed on the first surface. Top surfaces of the interposer and the second chip are substantially aligned with each other. The interposer is bonded to the second pads.
Abstract:
The present invention relates to a semiconductor element having conductive vias and a semiconductor package having a semiconductor element with conductive vias and a method for making the same. The semiconductor element having conductive vias includes a silicon substrate and at least one conductive via. The thickness of the silicon substrate is substantially in a range from 75 to 150 μm. The conductive via includes a first insulation layer and a conductive metal, and the thickness of the first insulation layer is substantially in a range from 5 to 19 μm. Using the semiconductor element and the semiconductor package of the present invention, the electrical connection between the conductive via and the other element can be ensured, and the electrical connection between the silicon substrate and the other semiconductor element can be ensured, so as to raise the yield rate of a product. Moreover, by employing the method of the present invention, warpage and shift of the silicon substrate can be avoided during the reflow process, so as to conduct the reflow process only a single time in the method of the present invention, thereby simplifying the subsequent process and reducing cost.
Abstract:
A semiconductor structure, a method for manufacturing a semiconductor structure and a semiconductor package are provided. The method for manufacturing a semiconductor structure includes the following steps. Firstly, a silicon substrate is provided. Next, a part of the silicon substrate is removed to form a ring hole and a silicon pillar surrounded by the silicon pillar. Then, a photosensitive material is disposed in the ring hole, wherein the photosensitive material is insulating. After that, the silicon pillar is removed, such that the ring hole forms a through hole and the photosensitive material covers a lateral wall of the through hole. Lastly, the conductive material is disposed in the through hole, wherein the outer surface of the conductive material is surrounded by the photosensitive material.
Abstract:
The present invention relates to a method for forming a via in a substrate and a substrate with a via. The method for forming a via in a substrate includes the following steps: (a) providing a substrate having a first surface and a second surface; (b) forming a groove that has a side wall and a bottom wall on the first surface of the substrate; (c) forming a first conductive metal on the side wall and the bottom wall of the groove so as to form a central groove; (d) forming a center insulating material in the central groove; (e) forming an annular groove that surrounds the first conductive metal on the first surface of the substrate; (f) forming a first insulating material in the annular groove; and (g) removing part of the second surface of the substrate to expose the first conductive metal, the center insulating material and the first insulating material. As a result, thicker insulating material can be formed in the via, and the thickness of the insulating material in the via is even.
Abstract:
A package and the method for making the same, and a stacked package, the method for making the package includes the following steps: (a) providing a carrier having a plurality of platforms; (b) providing a plurality of dice, and disposing the dice on the platforms; (c) performing a reflow process so that the dice are self-aligned on the platforms; (d) forming a molding compound in the gaps between the dice, and (e) performing a cutting process so as to form a plurality of packages. Since the dice are self-aligned on the platforms during the reflow process, a die attach machine with low accuracy can achieve highly accurate placement.
Abstract:
The present invention relates to a method for forming vias in a substrate, comprising the following steps: (a) providing a substrate having a first surface and a second surface; (b) forming a photo resist layer on the first surface of the substrate; (c) forming a pattern on the photo resist layer; (d) forming a groove and a pillar in the substrate according to the pattern, wherein the groove surrounds the pillar; (e) forming a polymer in the groove of the substrate; (f) removing the pillar of the substrate to form an accommodating space; (g) forming a conductive metal in the accommodating space; and (h) removing part of the second surface of the substrate to expose the conductive metal and the polymer. As a result, thicker polymer can be formed in the groove, and the thickness of the polymer in the groove is uniform.