摘要:
A bump fabrication process for forming a bump over a wafer having a plurality of bonding pads thereon is provided. A patterned solder mask layer having a plurality of openings that exposes the respective bonding pads is formed over a wafer. The area of the opening in a the cross-sectional area through a the bottom-section as well as through a the top-section of the opening is smaller than the area of the opening in a the cross-sectional area through a the mid-section of the opening. Solder material is deposited into the opening and then a reflow process is conducted fusing the solder material together to form a spherical bump inside the opening. Finally, the solder mask layer is removed. In addition, a pre-formed bump may form on the bonding pad of the wafer prior to forming the patterned solder mask layer over the wafer having at least with an opening that exposes the pre-formed bump. Solder material is deposited into the openings and then a reflow process is conducted fusing the solder material and the pre-formed bump together to form a spherical bump. The pre-formed bump and the solder material may be fabricated using different constituents.
摘要:
A semiconductor chip with bumps formed therein comprises an active surface, a plurality of bonding pads, a passivation layer, a plurality of first UBMs (under bump metallurgy), a second UBM, a plurality of first bumps, and a plurality of second bumps. The bonding pads are disposed on the active surface of the semiconductor chip. The passivation layer covers the active surface of the semiconductor chip with the pads exposed out of the passivation layer. The first UMBs are individually disposed on the bonding pads. The second UMB is disposed on at least two of the bonding pads. The first bumps are disposed on the first UMBs. The second bumps are disposed on the second UBM.
摘要:
A wafer-level package structure, applicable to a flip-chip type arrangement on a carrier having a plurality of contact points is described. This wafer-level package structure comprises a chip having a protective layer and a plurality of bonding pads and a conductive layer. The conductive layer is arranged on the bonding pads of the chip as contact points. The wafer-level package structure can further include a heat sink to enhance the heat dissipation ability of the package structure.
摘要:
The present invention relates to a multi-chip package structure, comprising a first substrate, a first chip, a sub-package and a first molding compound. The first chip is attached to the first substrate. The first molding compound encapsulates the first chip, the sub-package and the top surface of the first substrate. The bottom surface of the sub-package is attached to the first chip. The sub-package comprises a second substrate, a second chip and a second molding compound. The second substrate has a top surface and a bottom surface, and is electrically connected to the first chip. The second chip is attached to the top surface of the second substrate to which the second chip is electrically connected. The second molding compound encapsulates the second chip and part of the top surface of the second substrate. Whereby, the relative large area caused by the parallel arrangement of a plurality of conventional package structures can be reduced, and there is no need to redesign signal-transmitting path.
摘要:
A semiconductor wafer includes a plurality of areas and an array of dice disposed within each of the areas. The feature of the present invention is that at least two fiducial marks are disposed in each of the areas. The present invention further provides a method of testing a sawed semiconductor wafer.
摘要:
A solder ball attaching process for attaching solder balls to a wafer is provided. First, an under-ball-metallurgy layer is formed on the active surface of the wafer. Patterned masking layers are sequentially formed over the active surface of the wafer. The masking layers together form a step opening structure that exposes the under-ball-metallic layer. A solder ball is placed on the uppermost masking layer and allowed to roll so that the solder ball drops into the step opening structure by gravity. A reflow process is conducted to join the solder ball and the under-ball-metallurgy layer together. Finally, various masking layers are removed to expose the solder ball on the bonding pad of the wafer.
摘要:
A multichip module mainly comprises a first chip disposed on the upper surface of a substrate by wire bonding and a second chip disposed on the lower surface of the substrate by flip-chip bonding wherein the first chip and the second chip are of the same type. The upper surface of the substrate is provided with a plurality of wire bondable pads for electrical connecting to the first chip. The lower surface of the substrate is provided with a plurality of flip-chip pads for electrical connecting to the second chip. According to the present invention, the first and second chips are both oriented face up (with their bonding pads up with respect to the substrate) for bonding to the substrate. Thus, address assignment of the bonding pads on the two semiconductor chips conforms to each other. Consequently, circuit layout on the upper and lower surfaces of the substrate can use substantially the same design wherein common conductive traces on the upper and lower surfaces of the substrate are electrically connected by plated through holes.
摘要:
A press plate mainly includes a plate and a probe. The plate has an opening which corresponds to a chip of the substrate and inner finger thereof, and the probe is elastically attached to the edge of the opening for wire bond checking. After the wire bonding process, the wire connecting the chip and the inner finger of the substrate and the probe of the wire bond checking system form a loop. Then a current is sent to the substrate from the wire bond checking system to check for the occurrence of wire occurring lift bond or missing wire.
摘要:
A strip mainly includes a plurality of guide holes, a plurality of position holes, a plurality of separation holes, a plurality of second slots and a plurality of substrate areas. Guide holes are arranged on two sides of the strip for carrying during processing, and position holes are arranged at four corners of the strip for positioning on the machine during processing. Separation holes and slots are to be contiguous to the substrate areas and separate the substrate areas from one another so that the discontinuous warpage of the substrate area affects the peripheral substrate areas. Therefore, it can reduce the chance of breaking chip in the substrate area. The two ends of the substrate are adjacent to the slots to reduce the stress of other substrates in the longitudinal direction actuating the chip during heat treatment in processing. The strip further includes a metal layer surrounding the substrate areas to increase the stiffness of the entirety of the strip.
摘要:
A method of manufacturing a leadless semiconductor chip package comprises the steps of: attaching a semiconductor die onto a die pad of a lead frame, wherein the lead frame comprises a plurality of leads arranged about the periphery of the die pad and each lead has a notch formed at the to-be-punched position thereof; wire bonding the inner ends of the leads to bonding pads on the semiconductor die; sucking a film against a lower part of a molding die; closing and clamping the molding die in a manner that the semiconductor die is positioned in a cavity of the molding die and the lead frame is disposed against the film; transferring a hardenable molding compound into the cavity; hardening the molding compound; opening the molding die to take out the molded product; and punching the molded product along the notches of the leads thereby making the singulation process more convenient and correct. The lower surface of each lead of the lead frame according to the present invention is smaller than the upper surface thereof such that each lead has a tapered profile which cooperates with the film to provide better sealing effect thereby preventing the formation of flash.